Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk11tb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> [_ G / g ]_ Y .<_ ( [_ I / g ]_ Y .\/ ( R ` ( I o. `' G ) ) ) ) |
13 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> b e. T ) |
14 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) |
15 |
13 14
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk42 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) |
17 |
15 16
|
syld3an3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ G / g ]_ X ` P ) = [_ G / g ]_ Y ) |
18 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) ) |
20 |
|
simp331 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> I e. T ) |
21 |
|
simp332 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> I =/= ( _I |` B ) ) |
22 |
20 21
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( I e. T /\ I =/= ( _I |` B ) ) ) |
23 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
24 |
|
simp321 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> b =/= ( _I |` B ) ) |
25 |
|
simp322 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
26 |
|
simp333 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( R ` b ) =/= ( R ` I ) ) |
27 |
24 25 26
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` I ) ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk42 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ I / g ]_ X ` P ) = [_ I / g ]_ Y ) |
29 |
18 19 22 23 13 27 28
|
syl312anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ I / g ]_ X ` P ) = [_ I / g ]_ Y ) |
30 |
29
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) = ( [_ I / g ]_ Y .\/ ( R ` ( I o. `' G ) ) ) ) |
31 |
12 17 30
|
3brtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) |