Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> K e. HL ) |
13 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> W e. H ) |
14 |
1 6 7 8
|
cdlemftr3 |
|- ( ( K e. HL /\ W e. H ) -> E. b e. T ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) |
15 |
12 13 14
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> E. b e. T ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) |
16 |
|
nfv |
|- F/ b ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) |
17 |
|
nfcv |
|- F/_ b G |
18 |
|
nfra1 |
|- F/ b A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) |
19 |
|
nfcv |
|- F/_ b T |
20 |
18 19
|
nfriota |
|- F/_ b ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
21 |
11 20
|
nfcxfr |
|- F/_ b X |
22 |
17 21
|
nfcsbw |
|- F/_ b [_ G / g ]_ X |
23 |
|
nfcv |
|- F/_ b P |
24 |
22 23
|
nffv |
|- F/_ b ( [_ G / g ]_ X ` P ) |
25 |
|
nfcv |
|- F/_ b .<_ |
26 |
|
nfcv |
|- F/_ b I |
27 |
26 21
|
nfcsbw |
|- F/_ b [_ I / g ]_ X |
28 |
27 23
|
nffv |
|- F/_ b ( [_ I / g ]_ X ` P ) |
29 |
|
nfcv |
|- F/_ b .\/ |
30 |
|
nfcv |
|- F/_ b ( R ` ( I o. `' G ) ) |
31 |
28 29 30
|
nfov |
|- F/_ b ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) |
32 |
24 25 31
|
nfbr |
|- F/ b ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) |
33 |
|
simp11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) ) |
34 |
|
simp12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
35 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> b e. T ) |
36 |
|
simp3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> b =/= ( _I |` B ) ) |
37 |
|
simp3r1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
38 |
|
simp3r2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( R ` b ) =/= ( R ` G ) ) |
39 |
36 37 38
|
3jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) |
40 |
|
simp13l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> I e. T ) |
41 |
|
simp13r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> I =/= ( _I |` B ) ) |
42 |
|
simp3r3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( R ` b ) =/= ( R ` I ) ) |
43 |
40 41 42
|
3jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) |
44 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk11tc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) |
45 |
33 34 35 39 43 44
|
syl113anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) |
46 |
45
|
3exp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( b e. T -> ( ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) ) ) |
47 |
16 32 46
|
rexlimd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( E. b e. T ( b =/= ( _I |` B ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) /\ ( R ` b ) =/= ( R ` I ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) ) |
48 |
15 47
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ G / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' G ) ) ) ) |