Metamath Proof Explorer


Theorem cdlemk45

Description: Part of proof of Lemma K of Crawley p. 118. Line 37, p. 119. G , I stand for g, h. X represents tau. They do not explicitly mention the requirement ` ( G o. I ) =/= ( _I |`B ) . (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk5.y
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
cdlemk5.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk45
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( [_ ( G o. I ) / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk5.y
 |-  Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) )
11 cdlemk5.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) )
12 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( K e. HL /\ W e. H ) )
13 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) )
14 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> G e. T )
15 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> I e. T )
16 6 7 ltrnco
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ I e. T ) -> ( G o. I ) e. T )
17 12 14 15 16 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( G o. I ) e. T )
18 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( G o. I ) =/= ( _I |` B ) )
19 17 18 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( ( G o. I ) e. T /\ ( G o. I ) =/= ( _I |` B ) ) )
20 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) )
21 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> I =/= ( _I |` B ) )
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk11t
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( ( G o. I ) e. T /\ ( G o. I ) =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) ) ) -> ( [_ ( G o. I ) / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' ( G o. I ) ) ) ) )
23 12 13 19 20 15 21 22 syl312anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( [_ ( G o. I ) / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' ( G o. I ) ) ) ) )
24 cnvco
 |-  `' ( G o. I ) = ( `' I o. `' G )
25 24 coeq2i
 |-  ( I o. `' ( G o. I ) ) = ( I o. ( `' I o. `' G ) )
26 coass
 |-  ( ( I o. `' I ) o. `' G ) = ( I o. ( `' I o. `' G ) )
27 25 26 eqtr4i
 |-  ( I o. `' ( G o. I ) ) = ( ( I o. `' I ) o. `' G )
28 1 6 7 ltrn1o
 |-  ( ( ( K e. HL /\ W e. H ) /\ I e. T ) -> I : B -1-1-onto-> B )
29 12 15 28 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> I : B -1-1-onto-> B )
30 f1ococnv2
 |-  ( I : B -1-1-onto-> B -> ( I o. `' I ) = ( _I |` B ) )
31 29 30 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( I o. `' I ) = ( _I |` B ) )
32 31 coeq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( ( I o. `' I ) o. `' G ) = ( ( _I |` B ) o. `' G ) )
33 1 6 7 ltrn1o
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> G : B -1-1-onto-> B )
34 12 14 33 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> G : B -1-1-onto-> B )
35 f1ocnv
 |-  ( G : B -1-1-onto-> B -> `' G : B -1-1-onto-> B )
36 f1of
 |-  ( `' G : B -1-1-onto-> B -> `' G : B --> B )
37 fcoi2
 |-  ( `' G : B --> B -> ( ( _I |` B ) o. `' G ) = `' G )
38 34 35 36 37 4syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( ( _I |` B ) o. `' G ) = `' G )
39 32 38 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( ( I o. `' I ) o. `' G ) = `' G )
40 27 39 syl5eq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( I o. `' ( G o. I ) ) = `' G )
41 40 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( R ` ( I o. `' ( G o. I ) ) ) = ( R ` `' G ) )
42 6 7 8 trlcnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` `' G ) = ( R ` G ) )
43 12 14 42 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( R ` `' G ) = ( R ` G ) )
44 41 43 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( R ` ( I o. `' ( G o. I ) ) ) = ( R ` G ) )
45 44 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( ( [_ I / g ]_ X ` P ) .\/ ( R ` ( I o. `' ( G o. I ) ) ) ) = ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) )
46 23 45 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( I e. T /\ I =/= ( _I |` B ) /\ ( G o. I ) =/= ( _I |` B ) ) ) -> ( [_ ( G o. I ) / g ]_ X ` P ) .<_ ( ( [_ I / g ]_ X ` P ) .\/ ( R ` G ) ) )