Metamath Proof Explorer


Theorem cdlemk11t

Description: Part of proof of Lemma K of Crawley p. 118. Eq. 5, line 36, p. 119. G , I stand for g, h. X represents tau. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk11t K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X P ˙ I / g X P ˙ R I G -1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp11l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B K HL
13 simp11r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B W H
14 1 6 7 8 cdlemftr3 K HL W H b T b I B R b R F R b R G R b R I
15 12 13 14 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I
16 nfv b K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B
17 nfcv _ b G
18 nfra1 b b T b I B R b R F R b R g z P = Y
19 nfcv _ b T
20 18 19 nfriota _ b ι z T | b T b I B R b R F R b R g z P = Y
21 11 20 nfcxfr _ b X
22 17 21 nfcsbw _ b G / g X
23 nfcv _ b P
24 22 23 nffv _ b G / g X P
25 nfcv _ b ˙
26 nfcv _ b I
27 26 21 nfcsbw _ b I / g X
28 27 23 nffv _ b I / g X P
29 nfcv _ b ˙
30 nfcv _ b R I G -1
31 28 29 30 nfov _ b I / g X P ˙ R I G -1
32 24 25 31 nfbr b G / g X P ˙ I / g X P ˙ R I G -1
33 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I K HL W H F T F I B G T G I B
34 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I N T P A ¬ P ˙ W R F = R N
35 simp2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I b T
36 simp3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I b I B
37 simp3r1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I R b R F
38 simp3r2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I R b R G
39 36 37 38 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I b I B R b R F R b R G
40 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I I T
41 simp13r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I I I B
42 simp3r3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I R b R I
43 40 41 42 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I I T I I B R b R I
44 1 2 3 4 5 6 7 8 9 10 11 cdlemk11tc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g X P ˙ I / g X P ˙ R I G -1
45 33 34 35 39 43 44 syl113anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I G / g X P ˙ I / g X P ˙ R I G -1
46 45 3exp K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I G / g X P ˙ I / g X P ˙ R I G -1
47 16 32 46 rexlimd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B b T b I B R b R F R b R G R b R I G / g X P ˙ I / g X P ˙ R I G -1
48 15 47 mpd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G / g X P ˙ I / g X P ˙ R I G -1