Metamath Proof Explorer


Theorem cdlemk11t

Description: Part of proof of Lemma K of Crawley p. 118. Eq. 5, line 36, p. 119. G , I stand for g, h. X represents tau. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk11t KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙I/gXP˙RIG-1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp11l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKHL
13 simp11r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBWH
14 1 6 7 8 cdlemftr3 KHLWHbTbIBRbRFRbRGRbRI
15 12 13 14 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRI
16 nfv bKHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIB
17 nfcv _bG
18 nfra1 bbTbIBRbRFRbRgzP=Y
19 nfcv _bT
20 18 19 nfriota _bιzT|bTbIBRbRFRbRgzP=Y
21 11 20 nfcxfr _bX
22 17 21 nfcsbw _bG/gX
23 nfcv _bP
24 22 23 nffv _bG/gXP
25 nfcv _b˙
26 nfcv _bI
27 26 21 nfcsbw _bI/gX
28 27 23 nffv _bI/gXP
29 nfcv _b˙
30 nfcv _bRIG-1
31 28 29 30 nfov _bI/gXP˙RIG-1
32 24 25 31 nfbr bG/gXP˙I/gXP˙RIG-1
33 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIKHLWHFTFIBGTGIB
34 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRINTPA¬P˙WRF=RN
35 simp2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIbT
36 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIbIB
37 simp3r1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIRbRF
38 simp3r2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIRbRG
39 36 37 38 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIbIBRbRFRbRG
40 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIIT
41 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIIIB
42 simp3r3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIRbRI
43 40 41 42 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIITIIBRbRI
44 1 2 3 4 5 6 7 8 9 10 11 cdlemk11tc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gXP˙I/gXP˙RIG-1
45 33 34 35 39 43 44 syl113anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIG/gXP˙I/gXP˙RIG-1
46 45 3exp KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIG/gXP˙I/gXP˙RIG-1
47 16 32 46 rexlimd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBbTbIBRbRFRbRGRbRIG/gXP˙I/gXP˙RIG-1
48 15 47 mpd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙I/gXP˙RIG-1