Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk5u |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( O ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' D ) ) ) ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. HL ) |
13 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> P e. A ) |
14 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
15 |
|
simp212 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G e. T ) |
16 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
17 |
14 15 13 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( G ` P ) e. A ) |
18 |
|
simp213 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X e. T ) |
19 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ P e. A ) -> ( X ` P ) e. A ) |
20 |
14 18 13 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( X ` P ) e. A ) |
21 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) ) |
22 |
|
simp211 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> N e. T ) |
23 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
24 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
25 |
|
simp3l1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) ) |
26 |
|
simp3l2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) ) |
27 |
|
simp3r1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) ) |
28 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) e. A /\ -. ( O ` P ) .<_ W ) ) |
29 |
28
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A ) |
30 |
21 22 23 24 25 26 27 29
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( O ` P ) e. A ) |
31 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D e. T ) |
32 |
|
simp3r2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` D ) ) |
33 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ D e. T ) /\ ( R ` G ) =/= ( R ` D ) ) -> ( R ` ( G o. `' D ) ) e. A ) |
34 |
14 15 31 32 33
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( G o. `' D ) ) e. A ) |
35 |
|
simp3r3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` X ) =/= ( R ` D ) ) |
36 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ D e. T ) /\ ( R ` X ) =/= ( R ` D ) ) -> ( R ` ( X o. `' D ) ) e. A ) |
37 |
14 18 31 35 36
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' D ) ) e. A ) |
38 |
2 3 4 5
|
dalaw |
|- ( ( K e. HL /\ ( P e. A /\ ( G ` P ) e. A /\ ( X ` P ) e. A ) /\ ( ( O ` P ) e. A /\ ( R ` ( G o. `' D ) ) e. A /\ ( R ` ( X o. `' D ) ) e. A ) ) -> ( ( ( P .\/ ( O ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' D ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' D ) ) .\/ ( O ` P ) ) ) ) ) ) |
39 |
12 13 17 20 30 34 37 38
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( P .\/ ( O ` P ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' D ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' D ) ) .\/ ( O ` P ) ) ) ) ) ) |
40 |
11 39
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) .\/ ( ( ( X ` P ) .\/ P ) ./\ ( ( R ` ( X o. `' D ) ) .\/ ( O ` P ) ) ) ) ) |