Metamath Proof Explorer


Theorem cdlemk6u

Description: Part of proof of Lemma K of Crawley p. 118. Apply dalaw . (Contributed by NM, 4-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk1.l = ( le ‘ 𝐾 )
cdlemk1.j = ( join ‘ 𝐾 )
cdlemk1.m = ( meet ‘ 𝐾 )
cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk1.o 𝑂 = ( 𝑆𝐷 )
Assertion cdlemk6u ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( ( 𝑂𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( ( ( 𝐺𝑃 ) ( 𝑋𝑃 ) ) ( ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) ) ( ( ( 𝑋𝑃 ) 𝑃 ) ( ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ( 𝑂𝑃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk1.l = ( le ‘ 𝐾 )
3 cdlemk1.j = ( join ‘ 𝐾 )
4 cdlemk1.m = ( meet ‘ 𝐾 )
5 cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk1.o 𝑂 = ( 𝑆𝐷 )
11 1 2 3 4 5 6 7 8 9 10 cdlemk5u ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( ( 𝑃 ( 𝑂𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) )
12 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝐾 ∈ HL )
13 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝑃𝐴 )
14 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 simp212 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝐺𝑇 )
16 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
17 14 15 13 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
18 simp213 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝑋𝑇 )
19 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇𝑃𝐴 ) → ( 𝑋𝑃 ) ∈ 𝐴 )
20 14 18 13 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑋𝑃 ) ∈ 𝐴 )
21 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) )
22 simp211 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝑁𝑇 )
23 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
24 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
25 simp3l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) )
26 simp3l2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝐷 ≠ ( I ↾ 𝐵 ) )
27 simp3r1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) )
28 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑂𝑃 ) 𝑊 ) )
29 28 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ∈ 𝐴 )
30 21 22 23 24 25 26 27 29 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑂𝑃 ) ∈ 𝐴 )
31 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → 𝐷𝑇 )
32 simp3r2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) )
33 5 6 7 8 trlcocnvat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺𝑇𝐷𝑇 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ) → ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ∈ 𝐴 )
34 14 15 31 32 33 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ∈ 𝐴 )
35 simp3r3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) )
36 5 6 7 8 trlcocnvat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝑇𝐷𝑇 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) → ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ∈ 𝐴 )
37 14 18 31 35 36 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ∈ 𝐴 )
38 2 3 4 5 dalaw ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ∧ ( 𝑋𝑃 ) ∈ 𝐴 ) ∧ ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ∈ 𝐴 ) ) → ( ( ( 𝑃 ( 𝑂𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( ( 𝑂𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( ( ( 𝐺𝑃 ) ( 𝑋𝑃 ) ) ( ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) ) ( ( ( 𝑋𝑃 ) 𝑃 ) ( ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ( 𝑂𝑃 ) ) ) ) ) )
39 12 13 17 20 30 34 37 38 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( ( ( 𝑃 ( 𝑂𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( ( 𝑂𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( ( ( 𝐺𝑃 ) ( 𝑋𝑃 ) ) ( ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) ) ( ( ( 𝑋𝑃 ) 𝑃 ) ( ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ( 𝑂𝑃 ) ) ) ) ) )
40 11 39 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( ( 𝑁𝑇𝐺𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐷 ) ∧ ( 𝑅𝑋 ) ≠ ( 𝑅𝐷 ) ) ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( ( 𝑂𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) ) ( ( ( ( 𝐺𝑃 ) ( 𝑋𝑃 ) ) ( ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ) ) ( ( ( 𝑋𝑃 ) 𝑃 ) ( ( 𝑅 ‘ ( 𝑋 𝐷 ) ) ( 𝑂𝑃 ) ) ) ) )