Step |
Hyp |
Ref |
Expression |
1 |
|
climisp.m |
|- ( ph -> M e. ZZ ) |
2 |
|
climisp.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
climisp.f |
|- ( ph -> F : Z --> CC ) |
4 |
|
climisp.c |
|- ( ph -> F ~~> A ) |
5 |
|
climisp.x |
|- ( ph -> X e. RR+ ) |
6 |
|
climisp.l |
|- ( ( ph /\ k e. Z /\ ( F ` k ) =/= A ) -> X <_ ( abs ` ( ( F ` k ) - A ) ) ) |
7 |
|
nfv |
|- F/ k ( ph /\ j e. Z ) |
8 |
|
nfra1 |
|- F/ k A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) |
9 |
7 8
|
nfan |
|- F/ k ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
10 |
|
simplll |
|- ( ( ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
11 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
12 |
11
|
ad4ant24 |
|- ( ( ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
13 |
|
rspa |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
14 |
13
|
simprd |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
15 |
14
|
adantll |
|- ( ( ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
16 |
|
simpl3 |
|- ( ( ( ph /\ k e. Z /\ ( abs ` ( ( F ` k ) - A ) ) < X ) /\ -. ( F ` k ) = A ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
17 |
|
neqne |
|- ( -. ( F ` k ) = A -> ( F ` k ) =/= A ) |
18 |
5
|
rpred |
|- ( ph -> X e. RR ) |
19 |
18
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ ( F ` k ) =/= A ) -> X e. RR ) |
20 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
21 |
2
|
fvexi |
|- Z e. _V |
22 |
21
|
a1i |
|- ( ph -> Z e. _V ) |
23 |
3 22
|
fexd |
|- ( ph -> F e. _V ) |
24 |
|
eqidd |
|- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( F ` k ) ) |
25 |
23 24
|
clim |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
26 |
4 25
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
27 |
26
|
simpld |
|- ( ph -> A e. CC ) |
28 |
27
|
adantr |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
29 |
20 28
|
subcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - A ) e. CC ) |
30 |
29
|
abscld |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( F ` k ) =/= A ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
32 |
6
|
3expa |
|- ( ( ( ph /\ k e. Z ) /\ ( F ` k ) =/= A ) -> X <_ ( abs ` ( ( F ` k ) - A ) ) ) |
33 |
19 31 32
|
lensymd |
|- ( ( ( ph /\ k e. Z ) /\ ( F ` k ) =/= A ) -> -. ( abs ` ( ( F ` k ) - A ) ) < X ) |
34 |
17 33
|
sylan2 |
|- ( ( ( ph /\ k e. Z ) /\ -. ( F ` k ) = A ) -> -. ( abs ` ( ( F ` k ) - A ) ) < X ) |
35 |
34
|
3adantl3 |
|- ( ( ( ph /\ k e. Z /\ ( abs ` ( ( F ` k ) - A ) ) < X ) /\ -. ( F ` k ) = A ) -> -. ( abs ` ( ( F ` k ) - A ) ) < X ) |
36 |
16 35
|
condan |
|- ( ( ph /\ k e. Z /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) = A ) |
37 |
10 12 15 36
|
syl3anc |
|- ( ( ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) = A ) |
38 |
9 37
|
ralrimia |
|- ( ( ( ph /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) -> A. k e. ( ZZ>= ` j ) ( F ` k ) = A ) |
39 |
|
breq2 |
|- ( x = X -> ( ( abs ` ( ( F ` k ) - A ) ) < x <-> ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
40 |
39
|
anbi2d |
|- ( x = X -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) ) |
41 |
40
|
rexralbidv |
|- ( x = X -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) ) |
42 |
26
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) |
43 |
41 42 5
|
rspcdva |
|- ( ph -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
44 |
2
|
rexuz3 |
|- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) ) |
45 |
1 44
|
syl |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) ) |
46 |
43 45
|
mpbird |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
47 |
38 46
|
reximddv3 |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) = A ) |