| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
1
|
dfclnbgr4 |
|- ( K e. ( Vtx ` G ) -> ( G ClNeighbVtx K ) = ( { K } u. ( G NeighbVtx K ) ) ) |
| 3 |
2
|
adantl |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G ClNeighbVtx K ) = ( { K } u. ( G NeighbVtx K ) ) ) |
| 4 |
|
nbgr0edg |
|- ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) ) |
| 5 |
4
|
adantr |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G NeighbVtx K ) = (/) ) |
| 6 |
5
|
uneq2d |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( { K } u. ( G NeighbVtx K ) ) = ( { K } u. (/) ) ) |
| 7 |
|
un0 |
|- ( { K } u. (/) ) = { K } |
| 8 |
7
|
a1i |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( { K } u. (/) ) = { K } ) |
| 9 |
3 6 8
|
3eqtrd |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G ClNeighbVtx K ) = { K } ) |