| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clscld.1 | 
							 |-  X = U. J  | 
						
						
							| 2 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> J e. Top )  | 
						
						
							| 3 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> S C_ X )  | 
						
						
							| 4 | 
							
								1
							 | 
							clsss3 | 
							 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseld | 
							 |-  ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. X ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3impia | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. X )  | 
						
						
							| 7 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. ( ( cls ` J ) ` S ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							elcls | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpa | 
							 |-  ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) )  | 
						
						
							| 10 | 
							
								2 3 6 7 9
							 | 
							syl31anc | 
							 |-  ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eleq2 | 
							 |-  ( x = U -> ( P e. x <-> P e. U ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ineq1 | 
							 |-  ( x = U -> ( x i^i S ) = ( U i^i S ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							neeq1d | 
							 |-  ( x = U -> ( ( x i^i S ) =/= (/) <-> ( U i^i S ) =/= (/) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							imbi12d | 
							 |-  ( x = U -> ( ( P e. x -> ( x i^i S ) =/= (/) ) <-> ( P e. U -> ( U i^i S ) =/= (/) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rspccv | 
							 |-  ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( U e. J -> ( P e. U -> ( U i^i S ) =/= (/) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imp32 | 
							 |-  ( ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							sylan | 
							 |-  ( ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) )  |