| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 |  |-  X = U. J | 
						
							| 2 |  | simpl |  |-  ( ( J e. Top /\ S C_ X ) -> J e. Top ) | 
						
							| 3 | 1 | clsss3 |  |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) | 
						
							| 4 | 1 | sscls |  |-  ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) | 
						
							| 5 | 1 | ntrss |  |-  ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X /\ S C_ ( ( cls ` J ) ` S ) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc |  |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) | 
						
							| 8 |  | sseq2 |  |-  ( ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) | 
						
							| 10 | 7 9 | mpbid |  |-  ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ (/) ) | 
						
							| 11 |  | ss0 |  |-  ( ( ( int ` J ) ` S ) C_ (/) -> ( ( int ` J ) ` S ) = (/) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) = (/) ) |