| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 | 1 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋 ) | 
						
							| 4 | 1 | sscls | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 5 | 1 | ntrss | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋  ∧  𝑆  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 8 |  | sseq2 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ∅  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ↔  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∅ ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ∅ )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ↔  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∅ ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∅ ) | 
						
							| 11 |  | ss0 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  ⊆  ∅  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) |