| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | ntrval | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∪  ( 𝐽  ∩  𝒫  𝑆 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  ↔  ∪  ( 𝐽  ∩  𝒫  𝑆 )  =  ∅ ) ) | 
						
							| 4 |  | neq0 | ⊢ ( ¬  ∪  ( 𝐽  ∩  𝒫  𝑆 )  =  ∅  ↔  ∃ 𝑦 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 ) ) | 
						
							| 5 | 4 | con1bii | ⊢ ( ¬  ∃ 𝑦 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ∪  ( 𝐽  ∩  𝒫  𝑆 )  =  ∅ ) | 
						
							| 6 |  | ancom | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 ) )  ↔  ( 𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 )  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 7 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ( 𝑥  ∈  𝐽  ∧  𝑥  ∈  𝒫  𝑆 ) ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 )  ∧  𝑦  ∈  𝑥 )  ↔  ( ( 𝑥  ∈  𝐽  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 9 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝐽  ∧  𝑥  ∈  𝒫  𝑆 )  ∧  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝐽  ∧  ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 10 | 6 8 9 | 3bitri | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 ) )  ↔  ( 𝑥  ∈  𝐽  ∧  ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 11 | 10 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐽  ∧  ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 12 |  | eluni | ⊢ ( 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ∃ 𝑥 ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  ( 𝐽  ∩  𝒫  𝑆 ) ) ) | 
						
							| 13 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐽  ∧  ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 16 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  𝐽 ∃ 𝑦 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 17 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 18 | 17 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐽 ∃ 𝑦 ( 𝑥  ∈  𝒫  𝑆  ∧  𝑦  ∈  𝑥 )  ↔  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 19 | 15 16 18 | 3bitr2i | ⊢ ( ∃ 𝑦 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 20 | 19 | notbii | ⊢ ( ¬  ∃ 𝑦 𝑦  ∈  ∪  ( 𝐽  ∩  𝒫  𝑆 )  ↔  ¬  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 21 | 5 20 | bitr3i | ⊢ ( ∪  ( 𝐽  ∩  𝒫  𝑆 )  =  ∅  ↔  ¬  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 22 |  | ralinexa | ⊢ ( ∀ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  →  ¬  ∃ 𝑦 𝑦  ∈  𝑥 )  ↔  ¬  ∃ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  ∧  ∃ 𝑦 𝑦  ∈  𝑥 ) ) | 
						
							| 23 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑆  ↔  𝑥  ⊆  𝑆 ) | 
						
							| 24 |  | neq0 | ⊢ ( ¬  𝑥  =  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝑥 ) | 
						
							| 25 | 24 | con1bii | ⊢ ( ¬  ∃ 𝑦 𝑦  ∈  𝑥  ↔  𝑥  =  ∅ ) | 
						
							| 26 | 23 25 | imbi12i | ⊢ ( ( 𝑥  ∈  𝒫  𝑆  →  ¬  ∃ 𝑦 𝑦  ∈  𝑥 )  ↔  ( 𝑥  ⊆  𝑆  →  𝑥  =  ∅ ) ) | 
						
							| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐽 ( 𝑥  ∈  𝒫  𝑆  →  ¬  ∃ 𝑦 𝑦  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐽 ( 𝑥  ⊆  𝑆  →  𝑥  =  ∅ ) ) | 
						
							| 28 | 21 22 27 | 3bitr2i | ⊢ ( ∪  ( 𝐽  ∩  𝒫  𝑆 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐽 ( 𝑥  ⊆  𝑆  →  𝑥  =  ∅ ) ) | 
						
							| 29 | 3 28 | bitrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐽 ( 𝑥  ⊆  𝑆  →  𝑥  =  ∅ ) ) ) |