Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 26-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |
|
Assertion | clsndisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |
|
2 | simp1 | |
|
3 | simp2 | |
|
4 | 1 | clsss3 | |
5 | 4 | sseld | |
6 | 5 | 3impia | |
7 | simp3 | |
|
8 | 1 | elcls | |
9 | 8 | biimpa | |
10 | 2 3 6 7 9 | syl31anc | |
11 | eleq2 | |
|
12 | ineq1 | |
|
13 | 12 | neeq1d | |
14 | 11 13 | imbi12d | |
15 | 14 | rspccv | |
16 | 15 | imp32 | |
17 | 10 16 | sylan | |