Metamath Proof Explorer


Theorem clsndisj

Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsndisj J Top S X P cls J S U J P U U S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 simp1 J Top S X P cls J S J Top
3 simp2 J Top S X P cls J S S X
4 1 clsss3 J Top S X cls J S X
5 4 sseld J Top S X P cls J S P X
6 5 3impia J Top S X P cls J S P X
7 simp3 J Top S X P cls J S P cls J S
8 1 elcls J Top S X P X P cls J S x J P x x S
9 8 biimpa J Top S X P X P cls J S x J P x x S
10 2 3 6 7 9 syl31anc J Top S X P cls J S x J P x x S
11 eleq2 x = U P x P U
12 ineq1 x = U x S = U S
13 12 neeq1d x = U x S U S
14 11 13 imbi12d x = U P x x S P U U S
15 14 rspccv x J P x x S U J P U U S
16 15 imp32 x J P x x S U J P U U S
17 10 16 sylan J Top S X P cls J S U J P U U S