Metamath Proof Explorer


Theorem clsndisj

Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion clsndisj JTopSXPclsJSUJPUUS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 simp1 JTopSXPclsJSJTop
3 simp2 JTopSXPclsJSSX
4 1 clsss3 JTopSXclsJSX
5 4 sseld JTopSXPclsJSPX
6 5 3impia JTopSXPclsJSPX
7 simp3 JTopSXPclsJSPclsJS
8 1 elcls JTopSXPXPclsJSxJPxxS
9 8 biimpa JTopSXPXPclsJSxJPxxS
10 2 3 6 7 9 syl31anc JTopSXPclsJSxJPxxS
11 eleq2 x=UPxPU
12 ineq1 x=UxS=US
13 12 neeq1d x=UxSUS
14 11 13 imbi12d x=UPxxSPUUS
15 14 rspccv xJPxxSUJPUUS
16 15 imp32 xJPxxSUJPUUS
17 10 16 sylan JTopSXPclsJSUJPUUS