| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonex2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknonex2.e |  |-  E = ( Edg ` G ) | 
						
							| 3 | 1 2 | clwwlknonex2 |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ { X , Y } e. E /\ W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) ) | 
						
							| 4 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 5 |  | isclwwlkn |  |-  ( W e. ( ( N - 2 ) ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = ( N - 2 ) ) ) | 
						
							| 6 | 1 | clwwlkbp |  |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word V /\ W =/= (/) ) ) | 
						
							| 7 | 6 | simp2d |  |-  ( W e. ( ClWWalks ` G ) -> W e. Word V ) | 
						
							| 8 |  | clwwlkgt0 |  |-  ( W e. ( ClWWalks ` G ) -> 0 < ( # ` W ) ) | 
						
							| 9 | 7 8 | jca |  |-  ( W e. ( ClWWalks ` G ) -> ( W e. Word V /\ 0 < ( # ` W ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ 0 < ( # ` W ) ) ) | 
						
							| 11 | 5 10 | sylbi |  |-  ( W e. ( ( N - 2 ) ClWWalksN G ) -> ( W e. Word V /\ 0 < ( # ` W ) ) ) | 
						
							| 12 | 11 | ad2antrl |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W e. Word V /\ 0 < ( # ` W ) ) ) | 
						
							| 13 |  | ccat2s1fst |  |-  ( ( W e. Word V /\ 0 < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 15 |  | simprr |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ` 0 ) = X ) | 
						
							| 16 | 14 15 | eqtrd |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) | 
						
							| 17 | 16 | ex |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. ( ( N - 2 ) ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) ) | 
						
							| 18 | 4 17 | biimtrid |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) ) | 
						
							| 19 | 18 | a1d |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) ) ) | 
						
							| 20 | 19 | 3imp |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ { X , Y } e. E /\ W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) | 
						
							| 21 |  | isclwwlknon |  |-  ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` 0 ) = X ) ) | 
						
							| 22 | 3 20 21 | sylanbrc |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ { X , Y } e. E /\ W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X ( ClWWalksNOn ` G ) N ) ) |