| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcmpcmet.1 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 |  | relcmpcmet.2 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 3 |  | cmpcmet.3 |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | 1rp |  |-  1 e. RR+ | 
						
							| 5 | 4 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. Comp ) | 
						
							| 7 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ x e. X ) -> D e. ( *Met ` X ) ) | 
						
							| 10 | 1 | mopntop |  |-  ( D e. ( *Met ` X ) -> J e. Top ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ph /\ x e. X ) -> J e. Top ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ x e. X ) -> x e. X ) | 
						
							| 13 |  | rpxr |  |-  ( 1 e. RR+ -> 1 e. RR* ) | 
						
							| 14 | 4 13 | mp1i |  |-  ( ( ph /\ x e. X ) -> 1 e. RR* ) | 
						
							| 15 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ 1 e. RR* ) -> ( x ( ball ` D ) 1 ) C_ X ) | 
						
							| 16 | 9 12 14 15 | syl3anc |  |-  ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ X ) | 
						
							| 17 | 1 | mopnuni |  |-  ( D e. ( *Met ` X ) -> X = U. J ) | 
						
							| 18 | 9 17 | syl |  |-  ( ( ph /\ x e. X ) -> X = U. J ) | 
						
							| 19 | 16 18 | sseqtrd |  |-  ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ U. J ) | 
						
							| 20 |  | eqid |  |-  U. J = U. J | 
						
							| 21 | 20 | clscld |  |-  ( ( J e. Top /\ ( x ( ball ` D ) 1 ) C_ U. J ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) | 
						
							| 22 | 11 19 21 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) | 
						
							| 23 |  | cmpcld |  |-  ( ( J e. Comp /\ ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp ) | 
						
							| 24 | 6 22 23 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp ) | 
						
							| 25 | 1 2 5 24 | relcmpcmet |  |-  ( ph -> D e. ( CMet ` X ) ) |