| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmslsschl.x |
|- X = ( W |`s U ) |
| 2 |
|
cmslsschl.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
hlbn |
|- ( W e. CHil -> W e. Ban ) |
| 4 |
|
bnnvc |
|- ( W e. Ban -> W e. NrmVec ) |
| 5 |
3 4
|
syl |
|- ( W e. CHil -> W e. NrmVec ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> W e. NrmVec ) |
| 7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 8 |
7
|
bnsca |
|- ( W e. Ban -> ( Scalar ` W ) e. CMetSp ) |
| 9 |
3 8
|
syl |
|- ( W e. CHil -> ( Scalar ` W ) e. CMetSp ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( Scalar ` W ) e. CMetSp ) |
| 11 |
|
3simpc |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> ( X e. CMetSp /\ U e. S ) ) |
| 12 |
1 2
|
cmslssbn |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
| 13 |
6 10 11 12
|
syl21anc |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. Ban ) |
| 14 |
|
hlcph |
|- ( W e. CHil -> W e. CPreHil ) |
| 15 |
1 2
|
cphsscph |
|- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |
| 16 |
14 15
|
sylan |
|- ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) |
| 17 |
16
|
3adant2 |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CPreHil ) |
| 18 |
|
ishl |
|- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) |
| 19 |
13 17 18
|
sylanbrc |
|- ( ( W e. CHil /\ X e. CMetSp /\ U e. S ) -> X e. CHil ) |