Step |
Hyp |
Ref |
Expression |
1 |
|
cmtfval.b |
|- B = ( Base ` K ) |
2 |
|
cmtfval.j |
|- .\/ = ( join ` K ) |
3 |
|
cmtfval.m |
|- ./\ = ( meet ` K ) |
4 |
|
cmtfval.o |
|- ._|_ = ( oc ` K ) |
5 |
|
cmtfval.c |
|- C = ( cm ` K ) |
6 |
|
elex |
|- ( K e. A -> K e. _V ) |
7 |
|
fveq2 |
|- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( p = K -> ( Base ` p ) = B ) |
9 |
8
|
eleq2d |
|- ( p = K -> ( x e. ( Base ` p ) <-> x e. B ) ) |
10 |
8
|
eleq2d |
|- ( p = K -> ( y e. ( Base ` p ) <-> y e. B ) ) |
11 |
|
fveq2 |
|- ( p = K -> ( join ` p ) = ( join ` K ) ) |
12 |
11 2
|
eqtr4di |
|- ( p = K -> ( join ` p ) = .\/ ) |
13 |
|
fveq2 |
|- ( p = K -> ( meet ` p ) = ( meet ` K ) ) |
14 |
13 3
|
eqtr4di |
|- ( p = K -> ( meet ` p ) = ./\ ) |
15 |
14
|
oveqd |
|- ( p = K -> ( x ( meet ` p ) y ) = ( x ./\ y ) ) |
16 |
|
eqidd |
|- ( p = K -> x = x ) |
17 |
|
fveq2 |
|- ( p = K -> ( oc ` p ) = ( oc ` K ) ) |
18 |
17 4
|
eqtr4di |
|- ( p = K -> ( oc ` p ) = ._|_ ) |
19 |
18
|
fveq1d |
|- ( p = K -> ( ( oc ` p ) ` y ) = ( ._|_ ` y ) ) |
20 |
14 16 19
|
oveq123d |
|- ( p = K -> ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) = ( x ./\ ( ._|_ ` y ) ) ) |
21 |
12 15 20
|
oveq123d |
|- ( p = K -> ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) |
22 |
21
|
eqeq2d |
|- ( p = K -> ( x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) <-> x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) |
23 |
9 10 22
|
3anbi123d |
|- ( p = K -> ( ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) <-> ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) ) |
24 |
23
|
opabbidv |
|- ( p = K -> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
25 |
|
df-cmtN |
|- cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |
26 |
|
df-3an |
|- ( ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) <-> ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) |
27 |
26
|
opabbii |
|- { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } |
28 |
1
|
fvexi |
|- B e. _V |
29 |
28 28
|
xpex |
|- ( B X. B ) e. _V |
30 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } C_ ( B X. B ) |
31 |
29 30
|
ssexi |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } e. _V |
32 |
27 31
|
eqeltri |
|- { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } e. _V |
33 |
24 25 32
|
fvmpt |
|- ( K e. _V -> ( cm ` K ) = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
34 |
5 33
|
eqtrid |
|- ( K e. _V -> C = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
35 |
6 34
|
syl |
|- ( K e. A -> C = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |