Metamath Proof Explorer


Theorem cnncvsaddassdemo

Description: Derive the associative law for complex number addition addass to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008) (Revised by AV, 9-Oct-2021) (Proof modification is discouraged.)

Ref Expression
Assertion cnncvsaddassdemo
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) )

Proof

Step Hyp Ref Expression
1 cnring
 |-  CCfld e. Ring
2 ringgrp
 |-  ( CCfld e. Ring -> CCfld e. Grp )
3 1 2 ax-mp
 |-  CCfld e. Grp
4 cnfldbas
 |-  CC = ( Base ` CCfld )
5 cnfldadd
 |-  + = ( +g ` CCfld )
6 4 5 grpass
 |-  ( ( CCfld e. Grp /\ ( A e. CC /\ B e. CC /\ C e. CC ) ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) )
7 3 6 mpan
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) )