| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlmod.w |  |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) | 
						
							| 2 | 1 | cnlmod |  |-  W e. LMod | 
						
							| 3 |  | cnfldex |  |-  CCfld e. _V | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 | 4 | ressid |  |-  ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( CCfld |`s CC ) = CCfld | 
						
							| 7 | 6 | eqcomi |  |-  CCfld = ( CCfld |`s CC ) | 
						
							| 8 |  | id |  |-  ( x e. CC -> x e. CC ) | 
						
							| 9 |  | addcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 10 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 11 |  | ax-1cn |  |-  1 e. CC | 
						
							| 12 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 13 | 8 9 10 11 12 | cnsubrglem |  |-  CC e. ( SubRing ` CCfld ) | 
						
							| 14 |  | qdass |  |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) | 
						
							| 15 | 1 14 | eqtri |  |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } ) | 
						
							| 16 | 15 | lmodsca |  |-  ( CCfld e. _V -> CCfld = ( Scalar ` W ) ) | 
						
							| 17 | 3 16 | ax-mp |  |-  CCfld = ( Scalar ` W ) | 
						
							| 18 | 17 | isclmi |  |-  ( ( W e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> W e. CMod ) | 
						
							| 19 | 2 7 13 18 | mp3an |  |-  W e. CMod | 
						
							| 20 |  | cndrng |  |-  CCfld e. DivRing | 
						
							| 21 | 17 | islvec |  |-  ( W e. LVec <-> ( W e. LMod /\ CCfld e. DivRing ) ) | 
						
							| 22 | 2 20 21 | mpbir2an |  |-  W e. LVec | 
						
							| 23 | 19 22 | elini |  |-  W e. ( CMod i^i LVec ) | 
						
							| 24 |  | df-cvs |  |-  CVec = ( CMod i^i LVec ) | 
						
							| 25 | 23 24 | eleqtrri |  |-  W e. CVec |