| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlmod.w | ⊢ 𝑊  =  ( { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ℂfld 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 } ) | 
						
							| 2 | 1 | cnlmod | ⊢ 𝑊  ∈  LMod | 
						
							| 3 |  | cnfldex | ⊢ ℂfld  ∈  V | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 | 4 | ressid | ⊢ ( ℂfld  ∈  V  →  ( ℂfld  ↾s  ℂ )  =  ℂfld ) | 
						
							| 6 | 3 5 | ax-mp | ⊢ ( ℂfld  ↾s  ℂ )  =  ℂfld | 
						
							| 7 | 6 | eqcomi | ⊢ ℂfld  =  ( ℂfld  ↾s  ℂ ) | 
						
							| 8 |  | id | ⊢ ( 𝑥  ∈  ℂ  →  𝑥  ∈  ℂ ) | 
						
							| 9 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 10 |  | negcl | ⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ ) | 
						
							| 11 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 12 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 13 | 8 9 10 11 12 | cnsubrglem | ⊢ ℂ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 14 |  | qdass | ⊢ ( { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ℂfld 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  ℂfld 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 } ) | 
						
							| 15 | 1 14 | eqtri | ⊢ 𝑊  =  ( { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  ℂfld 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 } ) | 
						
							| 16 | 15 | lmodsca | ⊢ ( ℂfld  ∈  V  →  ℂfld  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 17 | 3 16 | ax-mp | ⊢ ℂfld  =  ( Scalar ‘ 𝑊 ) | 
						
							| 18 | 17 | isclmi | ⊢ ( ( 𝑊  ∈  LMod  ∧  ℂfld  =  ( ℂfld  ↾s  ℂ )  ∧  ℂ  ∈  ( SubRing ‘ ℂfld ) )  →  𝑊  ∈  ℂMod ) | 
						
							| 19 | 2 7 13 18 | mp3an | ⊢ 𝑊  ∈  ℂMod | 
						
							| 20 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 21 | 17 | islvec | ⊢ ( 𝑊  ∈  LVec  ↔  ( 𝑊  ∈  LMod  ∧  ℂfld  ∈  DivRing ) ) | 
						
							| 22 | 2 20 21 | mpbir2an | ⊢ 𝑊  ∈  LVec | 
						
							| 23 | 19 22 | elini | ⊢ 𝑊  ∈  ( ℂMod  ∩  LVec ) | 
						
							| 24 |  | df-cvs | ⊢ ℂVec  =  ( ℂMod  ∩  LVec ) | 
						
							| 25 | 23 24 | eleqtrri | ⊢ 𝑊  ∈  ℂVec |