| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlmod.w | ⊢ 𝑊  =  ( { 〈 ( Base ‘ ndx ) ,  ℂ 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ℂfld 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 } ) | 
						
							| 2 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 3 | 1 | cnlmodlem1 | ⊢ ( Base ‘ 𝑊 )  =  ℂ | 
						
							| 4 | 3 | eqcomi | ⊢ ℂ  =  ( Base ‘ 𝑊 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 0  ∈  ℂ  →  ℂ  =  ( Base ‘ 𝑊 ) ) | 
						
							| 6 | 1 | cnlmodlem2 | ⊢ ( +g ‘ 𝑊 )  =   + | 
						
							| 7 | 6 | eqcomi | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 0  ∈  ℂ  →   +   =  ( +g ‘ 𝑊 ) ) | 
						
							| 9 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 11 |  | addass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 13 |  | id | ⊢ ( 0  ∈  ℂ  →  0  ∈  ℂ ) | 
						
							| 14 |  | addlid | ⊢ ( 𝑥  ∈  ℂ  →  ( 0  +  𝑥 )  =  𝑥 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 0  +  𝑥 )  =  𝑥 ) | 
						
							| 16 |  | negcl | ⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  - 𝑥  ∈  ℂ ) | 
						
							| 18 |  | id | ⊢ ( 𝑥  ∈  ℂ  →  𝑥  ∈  ℂ ) | 
						
							| 19 | 16 18 | addcomd | ⊢ ( 𝑥  ∈  ℂ  →  ( - 𝑥  +  𝑥 )  =  ( 𝑥  +  - 𝑥 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( - 𝑥  +  𝑥 )  =  ( 𝑥  +  - 𝑥 ) ) | 
						
							| 21 |  | negid | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  +  - 𝑥 )  =  0 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑥  +  - 𝑥 )  =  0 ) | 
						
							| 23 | 20 22 | eqtrd | ⊢ ( ( 0  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( - 𝑥  +  𝑥 )  =  0 ) | 
						
							| 24 | 5 8 10 12 13 15 17 23 | isgrpd | ⊢ ( 0  ∈  ℂ  →  𝑊  ∈  Grp ) | 
						
							| 25 | 4 | a1i | ⊢ ( 𝑊  ∈  Grp  →  ℂ  =  ( Base ‘ 𝑊 ) ) | 
						
							| 26 | 7 | a1i | ⊢ ( 𝑊  ∈  Grp  →   +   =  ( +g ‘ 𝑊 ) ) | 
						
							| 27 | 1 | cnlmodlem3 | ⊢ ( Scalar ‘ 𝑊 )  =  ℂfld | 
						
							| 28 | 27 | eqcomi | ⊢ ℂfld  =  ( Scalar ‘ 𝑊 ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑊  ∈  Grp  →  ℂfld  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 30 | 1 | cnlmod4 | ⊢ (  ·𝑠  ‘ 𝑊 )  =   · | 
						
							| 31 | 30 | eqcomi | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 32 | 31 | a1i | ⊢ ( 𝑊  ∈  Grp  →   ·   =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 33 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝑊  ∈  Grp  →  ℂ  =  ( Base ‘ ℂfld ) ) | 
						
							| 35 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑊  ∈  Grp  →   +   =  ( +g ‘ ℂfld ) ) | 
						
							| 37 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 38 | 37 | a1i | ⊢ ( 𝑊  ∈  Grp  →   ·   =  ( .r ‘ ℂfld ) ) | 
						
							| 39 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 40 | 39 | a1i | ⊢ ( 𝑊  ∈  Grp  →  1  =  ( 1r ‘ ℂfld ) ) | 
						
							| 41 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 42 | 41 | a1i | ⊢ ( 𝑊  ∈  Grp  →  ℂfld  ∈  Ring ) | 
						
							| 43 |  | id | ⊢ ( 𝑊  ∈  Grp  →  𝑊  ∈  Grp ) | 
						
							| 44 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 45 | 44 | 3adant1 | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 46 |  | adddi | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 48 |  | adddir | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 50 |  | mulass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 52 |  | mullid | ⊢ ( 𝑥  ∈  ℂ  →  ( 1  ·  𝑥 )  =  𝑥 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑥  ∈  ℂ )  →  ( 1  ·  𝑥 )  =  𝑥 ) | 
						
							| 54 | 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 | islmodd | ⊢ ( 𝑊  ∈  Grp  →  𝑊  ∈  LMod ) | 
						
							| 55 | 2 24 54 | mp2b | ⊢ 𝑊  ∈  LMod |