Metamath Proof Explorer


Theorem cnlmod

Description: The set of complex numbers is a left module over itself. The vector operation is + , and the scalar product is x. . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
Assertion cnlmod W LMod

Proof

Step Hyp Ref Expression
1 cnlmod.w W = Base ndx + ndx + Scalar ndx fld ndx ×
2 0cn 0
3 1 cnlmodlem1 Base W =
4 3 eqcomi = Base W
5 4 a1i 0 = Base W
6 1 cnlmodlem2 + W = +
7 6 eqcomi + = + W
8 7 a1i 0 + = + W
9 addcl x y x + y
10 9 3adant1 0 x y x + y
11 addass x y z x + y + z = x + y + z
12 11 adantl 0 x y z x + y + z = x + y + z
13 id 0 0
14 addid2 x 0 + x = x
15 14 adantl 0 x 0 + x = x
16 negcl x x
17 16 adantl 0 x x
18 id x x
19 16 18 addcomd x - x + x = x + x
20 19 adantl 0 x - x + x = x + x
21 negid x x + x = 0
22 21 adantl 0 x x + x = 0
23 20 22 eqtrd 0 x - x + x = 0
24 5 8 10 12 13 15 17 23 isgrpd 0 W Grp
25 4 a1i W Grp = Base W
26 7 a1i W Grp + = + W
27 1 cnlmodlem3 Scalar W = fld
28 27 eqcomi fld = Scalar W
29 28 a1i W Grp fld = Scalar W
30 1 cnlmod4 W = ×
31 30 eqcomi × = W
32 31 a1i W Grp × = W
33 cnfldbas = Base fld
34 33 a1i W Grp = Base fld
35 cnfldadd + = + fld
36 35 a1i W Grp + = + fld
37 cnfldmul × = fld
38 37 a1i W Grp × = fld
39 cnfld1 1 = 1 fld
40 39 a1i W Grp 1 = 1 fld
41 cnring fld Ring
42 41 a1i W Grp fld Ring
43 id W Grp W Grp
44 mulcl x y x y
45 44 3adant1 W Grp x y x y
46 adddi x y z x y + z = x y + x z
47 46 adantl W Grp x y z x y + z = x y + x z
48 adddir x y z x + y z = x z + y z
49 48 adantl W Grp x y z x + y z = x z + y z
50 mulass x y z x y z = x y z
51 50 adantl W Grp x y z x y z = x y z
52 mulid2 x 1 x = x
53 52 adantl W Grp x 1 x = x
54 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 islmodd W Grp W LMod
55 2 24 54 mp2b W LMod