Metamath Proof Explorer


Theorem cnlmodlem3

Description: Lemma 3 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
Assertion cnlmodlem3 ScalarW=fld

Proof

Step Hyp Ref Expression
1 cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
2 cnfldex fldV
3 qdass Basendx+ndx+Scalarndxfldndx×=Basendx+ndx+Scalarndxfldndx×
4 1 3 eqtri W=Basendx+ndx+Scalarndxfldndx×
5 4 lmodsca fldVfld=ScalarW
6 5 eqcomd fldVScalarW=fld
7 2 6 ax-mp ScalarW=fld