Metamath Proof Explorer


Theorem cnlmod4

Description: Lemma 4 for cnlmod . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
Assertion cnlmod4 W=×

Proof

Step Hyp Ref Expression
1 cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
2 mulex ×V
3 qdass Basendx+ndx+Scalarndxfldndx×=Basendx+ndx+Scalarndxfldndx×
4 1 3 eqtri W=Basendx+ndx+Scalarndxfldndx×
5 4 lmodvsca ×V×=W
6 5 eqcomd ×VW=×
7 2 6 ax-mp W=×