| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnlmod.w |  |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) | 
						
							| 2 |  | 0cn |  |-  0 e. CC | 
						
							| 3 | 1 | cnlmodlem1 |  |-  ( Base ` W ) = CC | 
						
							| 4 | 3 | eqcomi |  |-  CC = ( Base ` W ) | 
						
							| 5 | 4 | a1i |  |-  ( 0 e. CC -> CC = ( Base ` W ) ) | 
						
							| 6 | 1 | cnlmodlem2 |  |-  ( +g ` W ) = + | 
						
							| 7 | 6 | eqcomi |  |-  + = ( +g ` W ) | 
						
							| 8 | 7 | a1i |  |-  ( 0 e. CC -> + = ( +g ` W ) ) | 
						
							| 9 |  | addcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( 0 e. CC /\ x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 11 |  | addass |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( 0 e. CC /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) | 
						
							| 13 |  | id |  |-  ( 0 e. CC -> 0 e. CC ) | 
						
							| 14 |  | addlid |  |-  ( x e. CC -> ( 0 + x ) = x ) | 
						
							| 15 | 14 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) | 
						
							| 16 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 17 | 16 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> -u x e. CC ) | 
						
							| 18 |  | id |  |-  ( x e. CC -> x e. CC ) | 
						
							| 19 | 16 18 | addcomd |  |-  ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) | 
						
							| 21 |  | negid |  |-  ( x e. CC -> ( x + -u x ) = 0 ) | 
						
							| 22 | 21 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( x + -u x ) = 0 ) | 
						
							| 23 | 20 22 | eqtrd |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( -u x + x ) = 0 ) | 
						
							| 24 | 5 8 10 12 13 15 17 23 | isgrpd |  |-  ( 0 e. CC -> W e. Grp ) | 
						
							| 25 | 4 | a1i |  |-  ( W e. Grp -> CC = ( Base ` W ) ) | 
						
							| 26 | 7 | a1i |  |-  ( W e. Grp -> + = ( +g ` W ) ) | 
						
							| 27 | 1 | cnlmodlem3 |  |-  ( Scalar ` W ) = CCfld | 
						
							| 28 | 27 | eqcomi |  |-  CCfld = ( Scalar ` W ) | 
						
							| 29 | 28 | a1i |  |-  ( W e. Grp -> CCfld = ( Scalar ` W ) ) | 
						
							| 30 | 1 | cnlmod4 |  |-  ( .s ` W ) = x. | 
						
							| 31 | 30 | eqcomi |  |-  x. = ( .s ` W ) | 
						
							| 32 | 31 | a1i |  |-  ( W e. Grp -> x. = ( .s ` W ) ) | 
						
							| 33 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 34 | 33 | a1i |  |-  ( W e. Grp -> CC = ( Base ` CCfld ) ) | 
						
							| 35 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 36 | 35 | a1i |  |-  ( W e. Grp -> + = ( +g ` CCfld ) ) | 
						
							| 37 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 38 | 37 | a1i |  |-  ( W e. Grp -> x. = ( .r ` CCfld ) ) | 
						
							| 39 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 40 | 39 | a1i |  |-  ( W e. Grp -> 1 = ( 1r ` CCfld ) ) | 
						
							| 41 |  | cnring |  |-  CCfld e. Ring | 
						
							| 42 | 41 | a1i |  |-  ( W e. Grp -> CCfld e. Ring ) | 
						
							| 43 |  | id |  |-  ( W e. Grp -> W e. Grp ) | 
						
							| 44 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 45 | 44 | 3adant1 |  |-  ( ( W e. Grp /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 46 |  | adddi |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) | 
						
							| 48 |  | adddir |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) | 
						
							| 50 |  | mulass |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( W e. Grp /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 52 |  | mullid |  |-  ( x e. CC -> ( 1 x. x ) = x ) | 
						
							| 53 | 52 | adantl |  |-  ( ( W e. Grp /\ x e. CC ) -> ( 1 x. x ) = x ) | 
						
							| 54 | 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 | islmodd |  |-  ( W e. Grp -> W e. LMod ) | 
						
							| 55 | 2 24 54 | mp2b |  |-  W e. LMod |