| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzun.b |
|- B = ( Base ` M ) |
| 2 |
|
cntzun.z |
|- Z = ( Cntz ` M ) |
| 3 |
|
cntzsnid.1 |
|- .0. = ( 0g ` M ) |
| 4 |
1 3
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
| 5 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 6 |
1 5 2
|
elcntzsn |
|- ( .0. e. B -> ( x e. ( Z ` { .0. } ) <-> ( x e. B /\ ( x ( +g ` M ) .0. ) = ( .0. ( +g ` M ) x ) ) ) ) |
| 7 |
4 6
|
syl |
|- ( M e. Mnd -> ( x e. ( Z ` { .0. } ) <-> ( x e. B /\ ( x ( +g ` M ) .0. ) = ( .0. ( +g ` M ) x ) ) ) ) |
| 8 |
1 5 3
|
mndrid |
|- ( ( M e. Mnd /\ x e. B ) -> ( x ( +g ` M ) .0. ) = x ) |
| 9 |
1 5 3
|
mndlid |
|- ( ( M e. Mnd /\ x e. B ) -> ( .0. ( +g ` M ) x ) = x ) |
| 10 |
8 9
|
eqtr4d |
|- ( ( M e. Mnd /\ x e. B ) -> ( x ( +g ` M ) .0. ) = ( .0. ( +g ` M ) x ) ) |
| 11 |
10
|
ex |
|- ( M e. Mnd -> ( x e. B -> ( x ( +g ` M ) .0. ) = ( .0. ( +g ` M ) x ) ) ) |
| 12 |
11
|
pm4.71d |
|- ( M e. Mnd -> ( x e. B <-> ( x e. B /\ ( x ( +g ` M ) .0. ) = ( .0. ( +g ` M ) x ) ) ) ) |
| 13 |
7 12
|
bitr4d |
|- ( M e. Mnd -> ( x e. ( Z ` { .0. } ) <-> x e. B ) ) |
| 14 |
13
|
eqrdv |
|- ( M e. Mnd -> ( Z ` { .0. } ) = B ) |