Metamath Proof Explorer


Theorem cntzsnid

Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses cntzun.b B = Base M
cntzun.z Z = Cntz M
cntzsnid.1 0 ˙ = 0 M
Assertion cntzsnid M Mnd Z 0 ˙ = B

Proof

Step Hyp Ref Expression
1 cntzun.b B = Base M
2 cntzun.z Z = Cntz M
3 cntzsnid.1 0 ˙ = 0 M
4 1 3 mndidcl M Mnd 0 ˙ B
5 eqid + M = + M
6 1 5 2 elcntzsn 0 ˙ B x Z 0 ˙ x B x + M 0 ˙ = 0 ˙ + M x
7 4 6 syl M Mnd x Z 0 ˙ x B x + M 0 ˙ = 0 ˙ + M x
8 1 5 3 mndrid M Mnd x B x + M 0 ˙ = x
9 1 5 3 mndlid M Mnd x B 0 ˙ + M x = x
10 8 9 eqtr4d M Mnd x B x + M 0 ˙ = 0 ˙ + M x
11 10 ex M Mnd x B x + M 0 ˙ = 0 ˙ + M x
12 11 pm4.71d M Mnd x B x B x + M 0 ˙ = 0 ˙ + M x
13 7 12 bitr4d M Mnd x Z 0 ˙ x B
14 13 eqrdv M Mnd Z 0 ˙ = B