Metamath Proof Explorer


Theorem cntrcrng

Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrcrng.z Z = R 𝑠 Cntr mulGrp R
Assertion cntrcrng R Ring Z CRing

Proof

Step Hyp Ref Expression
1 cntrcrng.z Z = R 𝑠 Cntr mulGrp R
2 eqid mulGrp R = mulGrp R
3 eqid Base R = Base R
4 2 3 mgpbas Base R = Base mulGrp R
5 eqid Cntz mulGrp R = Cntz mulGrp R
6 4 5 cntrval Cntz mulGrp R Base R = Cntr mulGrp R
7 ssid Base R Base R
8 3 2 5 cntzsubr R Ring Base R Base R Cntz mulGrp R Base R SubRing R
9 7 8 mpan2 R Ring Cntz mulGrp R Base R SubRing R
10 6 9 eqeltrrid R Ring Cntr mulGrp R SubRing R
11 1 subrgring Cntr mulGrp R SubRing R Z Ring
12 10 11 syl R Ring Z Ring
13 fvex Cntr mulGrp R V
14 1 2 mgpress R Ring Cntr mulGrp R V mulGrp R 𝑠 Cntr mulGrp R = mulGrp Z
15 13 14 mpan2 R Ring mulGrp R 𝑠 Cntr mulGrp R = mulGrp Z
16 2 ringmgp R Ring mulGrp R Mnd
17 eqid mulGrp R 𝑠 Cntr mulGrp R = mulGrp R 𝑠 Cntr mulGrp R
18 17 cntrcmnd mulGrp R Mnd mulGrp R 𝑠 Cntr mulGrp R CMnd
19 16 18 syl R Ring mulGrp R 𝑠 Cntr mulGrp R CMnd
20 15 19 eqeltrrd R Ring mulGrp Z CMnd
21 eqid mulGrp Z = mulGrp Z
22 21 iscrng Z CRing Z Ring mulGrp Z CMnd
23 12 20 22 sylanbrc R Ring Z CRing