| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrcrng.z | ⊢ 𝑍  =  ( 𝑅  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 4 | 2 3 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Cntz ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 6 | 4 5 | cntrval | ⊢ ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) )  =  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 7 |  | ssid | ⊢ ( Base ‘ 𝑅 )  ⊆  ( Base ‘ 𝑅 ) | 
						
							| 8 | 3 2 5 | cntzsubr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( Base ‘ 𝑅 )  ⊆  ( Base ‘ 𝑅 ) )  →  ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) )  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 9 | 7 8 | mpan2 | ⊢ ( 𝑅  ∈  Ring  →  ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) )  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 10 | 6 9 | eqeltrrid | ⊢ ( 𝑅  ∈  Ring  →  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 11 | 1 | subrgring | ⊢ ( ( Cntr ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( SubRing ‘ 𝑅 )  →  𝑍  ∈  Ring ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑍  ∈  Ring ) | 
						
							| 13 |  | fvex | ⊢ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) )  ∈  V | 
						
							| 14 | 1 2 | mgpress | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) )  ∈  V )  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) )  =  ( mulGrp ‘ 𝑍 ) ) | 
						
							| 15 | 13 14 | mpan2 | ⊢ ( 𝑅  ∈  Ring  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) )  =  ( mulGrp ‘ 𝑍 ) ) | 
						
							| 16 | 2 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 17 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 18 | 17 | cntrcmnd | ⊢ ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) )  ∈  CMnd ) | 
						
							| 19 | 16 18 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) )  ∈  CMnd ) | 
						
							| 20 | 15 19 | eqeltrrd | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑍 )  ∈  CMnd ) | 
						
							| 21 |  | eqid | ⊢ ( mulGrp ‘ 𝑍 )  =  ( mulGrp ‘ 𝑍 ) | 
						
							| 22 | 21 | iscrng | ⊢ ( 𝑍  ∈  CRing  ↔  ( 𝑍  ∈  Ring  ∧  ( mulGrp ‘ 𝑍 )  ∈  CMnd ) ) | 
						
							| 23 | 12 20 22 | sylanbrc | ⊢ ( 𝑅  ∈  Ring  →  𝑍  ∈  CRing ) |