Step |
Hyp |
Ref |
Expression |
1 |
|
cntrcrng.z |
⊢ 𝑍 = ( 𝑅 ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
2 3
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) = ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) |
6 |
4 5
|
cntrval |
⊢ ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) = ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) |
7 |
|
ssid |
⊢ ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) |
8 |
3 2 5
|
cntzsubr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ∈ ( SubRing ‘ 𝑅 ) ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝑅 ∈ Ring → ( ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) ‘ ( Base ‘ 𝑅 ) ) ∈ ( SubRing ‘ 𝑅 ) ) |
10 |
6 9
|
eqeltrrid |
⊢ ( 𝑅 ∈ Ring → ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( SubRing ‘ 𝑅 ) ) |
11 |
1
|
subrgring |
⊢ ( ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( SubRing ‘ 𝑅 ) → 𝑍 ∈ Ring ) |
12 |
10 11
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ Ring ) |
13 |
|
fvex |
⊢ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V |
14 |
1 2
|
mgpress |
⊢ ( ( 𝑅 ∈ Ring ∧ ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( mulGrp ‘ 𝑍 ) ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( mulGrp ‘ 𝑍 ) ) |
16 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
17 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) |
18 |
17
|
cntrcmnd |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) ∈ CMnd ) |
19 |
16 18
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s ( Cntr ‘ ( mulGrp ‘ 𝑅 ) ) ) ∈ CMnd ) |
20 |
15 19
|
eqeltrrd |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑍 ) ∈ CMnd ) |
21 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
22 |
21
|
iscrng |
⊢ ( 𝑍 ∈ CRing ↔ ( 𝑍 ∈ Ring ∧ ( mulGrp ‘ 𝑍 ) ∈ CMnd ) ) |
23 |
12 20 22
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → 𝑍 ∈ CRing ) |