Metamath Proof Explorer


Theorem cntrcrng

Description: The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis cntrcrng.z
|- Z = ( R |`s ( Cntr ` ( mulGrp ` R ) ) )
Assertion cntrcrng
|- ( R e. Ring -> Z e. CRing )

Proof

Step Hyp Ref Expression
1 cntrcrng.z
 |-  Z = ( R |`s ( Cntr ` ( mulGrp ` R ) ) )
2 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 2 3 mgpbas
 |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) )
5 eqid
 |-  ( Cntz ` ( mulGrp ` R ) ) = ( Cntz ` ( mulGrp ` R ) )
6 4 5 cntrval
 |-  ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) = ( Cntr ` ( mulGrp ` R ) )
7 ssid
 |-  ( Base ` R ) C_ ( Base ` R )
8 3 2 5 cntzsubr
 |-  ( ( R e. Ring /\ ( Base ` R ) C_ ( Base ` R ) ) -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) )
9 7 8 mpan2
 |-  ( R e. Ring -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) )
10 6 9 eqeltrrid
 |-  ( R e. Ring -> ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) )
11 1 subrgring
 |-  ( ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) -> Z e. Ring )
12 10 11 syl
 |-  ( R e. Ring -> Z e. Ring )
13 fvex
 |-  ( Cntr ` ( mulGrp ` R ) ) e. _V
14 1 2 mgpress
 |-  ( ( R e. Ring /\ ( Cntr ` ( mulGrp ` R ) ) e. _V ) -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) )
15 13 14 mpan2
 |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) )
16 2 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
17 eqid
 |-  ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) )
18 17 cntrcmnd
 |-  ( ( mulGrp ` R ) e. Mnd -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd )
19 16 18 syl
 |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd )
20 15 19 eqeltrrd
 |-  ( R e. Ring -> ( mulGrp ` Z ) e. CMnd )
21 eqid
 |-  ( mulGrp ` Z ) = ( mulGrp ` Z )
22 21 iscrng
 |-  ( Z e. CRing <-> ( Z e. Ring /\ ( mulGrp ` Z ) e. CMnd ) )
23 12 20 22 sylanbrc
 |-  ( R e. Ring -> Z e. CRing )