| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrcrng.z |
|- Z = ( R |`s ( Cntr ` ( mulGrp ` R ) ) ) |
| 2 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
2 3
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 5 |
|
eqid |
|- ( Cntz ` ( mulGrp ` R ) ) = ( Cntz ` ( mulGrp ` R ) ) |
| 6 |
4 5
|
cntrval |
|- ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) = ( Cntr ` ( mulGrp ` R ) ) |
| 7 |
|
ssid |
|- ( Base ` R ) C_ ( Base ` R ) |
| 8 |
3 2 5
|
cntzsubr |
|- ( ( R e. Ring /\ ( Base ` R ) C_ ( Base ` R ) ) -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) ) |
| 9 |
7 8
|
mpan2 |
|- ( R e. Ring -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) ) |
| 10 |
6 9
|
eqeltrrid |
|- ( R e. Ring -> ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) ) |
| 11 |
1
|
subrgring |
|- ( ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) -> Z e. Ring ) |
| 12 |
10 11
|
syl |
|- ( R e. Ring -> Z e. Ring ) |
| 13 |
|
fvex |
|- ( Cntr ` ( mulGrp ` R ) ) e. _V |
| 14 |
1 2
|
mgpress |
|- ( ( R e. Ring /\ ( Cntr ` ( mulGrp ` R ) ) e. _V ) -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) ) |
| 15 |
13 14
|
mpan2 |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) ) |
| 16 |
2
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 17 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) |
| 18 |
17
|
cntrcmnd |
|- ( ( mulGrp ` R ) e. Mnd -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd ) |
| 19 |
16 18
|
syl |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd ) |
| 20 |
15 19
|
eqeltrrd |
|- ( R e. Ring -> ( mulGrp ` Z ) e. CMnd ) |
| 21 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 22 |
21
|
iscrng |
|- ( Z e. CRing <-> ( Z e. Ring /\ ( mulGrp ` Z ) e. CMnd ) ) |
| 23 |
12 20 22
|
sylanbrc |
|- ( R e. Ring -> Z e. CRing ) |