| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrcrng.z |  |-  Z = ( R |`s ( Cntr ` ( mulGrp ` R ) ) ) | 
						
							| 2 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 2 3 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( Cntz ` ( mulGrp ` R ) ) = ( Cntz ` ( mulGrp ` R ) ) | 
						
							| 6 | 4 5 | cntrval |  |-  ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) = ( Cntr ` ( mulGrp ` R ) ) | 
						
							| 7 |  | ssid |  |-  ( Base ` R ) C_ ( Base ` R ) | 
						
							| 8 | 3 2 5 | cntzsubr |  |-  ( ( R e. Ring /\ ( Base ` R ) C_ ( Base ` R ) ) -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( R e. Ring -> ( ( Cntz ` ( mulGrp ` R ) ) ` ( Base ` R ) ) e. ( SubRing ` R ) ) | 
						
							| 10 | 6 9 | eqeltrrid |  |-  ( R e. Ring -> ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) ) | 
						
							| 11 | 1 | subrgring |  |-  ( ( Cntr ` ( mulGrp ` R ) ) e. ( SubRing ` R ) -> Z e. Ring ) | 
						
							| 12 | 10 11 | syl |  |-  ( R e. Ring -> Z e. Ring ) | 
						
							| 13 |  | fvex |  |-  ( Cntr ` ( mulGrp ` R ) ) e. _V | 
						
							| 14 | 1 2 | mgpress |  |-  ( ( R e. Ring /\ ( Cntr ` ( mulGrp ` R ) ) e. _V ) -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( mulGrp ` Z ) ) | 
						
							| 16 | 2 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 17 |  | eqid |  |-  ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) = ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) | 
						
							| 18 | 17 | cntrcmnd |  |-  ( ( mulGrp ` R ) e. Mnd -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd ) | 
						
							| 19 | 16 18 | syl |  |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Cntr ` ( mulGrp ` R ) ) ) e. CMnd ) | 
						
							| 20 | 15 19 | eqeltrrd |  |-  ( R e. Ring -> ( mulGrp ` Z ) e. CMnd ) | 
						
							| 21 |  | eqid |  |-  ( mulGrp ` Z ) = ( mulGrp ` Z ) | 
						
							| 22 | 21 | iscrng |  |-  ( Z e. CRing <-> ( Z e. Ring /\ ( mulGrp ` Z ) e. CMnd ) ) | 
						
							| 23 | 12 20 22 | sylanbrc |  |-  ( R e. Ring -> Z e. CRing ) |