Step |
Hyp |
Ref |
Expression |
1 |
|
cntzun.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzun.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
3 |
|
cntzsnid.1 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
1 3
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
6 |
1 5 2
|
elcntzsn |
⊢ ( 0 ∈ 𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = ( 0 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝑀 ∈ Mnd → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = ( 0 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
8 |
1 5 3
|
mndrid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = 𝑥 ) |
9 |
1 5 3
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
10 |
8 9
|
eqtr4d |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = ( 0 ( +g ‘ 𝑀 ) 𝑥 ) ) |
11 |
10
|
ex |
⊢ ( 𝑀 ∈ Mnd → ( 𝑥 ∈ 𝐵 → ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = ( 0 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
12 |
11
|
pm4.71d |
⊢ ( 𝑀 ∈ Mnd → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ( +g ‘ 𝑀 ) 0 ) = ( 0 ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) |
13 |
7 12
|
bitr4d |
⊢ ( 𝑀 ∈ Mnd → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ 𝑥 ∈ 𝐵 ) ) |
14 |
13
|
eqrdv |
⊢ ( 𝑀 ∈ Mnd → ( 𝑍 ‘ { 0 } ) = 𝐵 ) |