| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzun.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | cntzun.z | ⊢ 𝑍  =  ( Cntz ‘ 𝑀 ) | 
						
							| 3 |  | cntzsnid.1 | ⊢  0   =  ( 0g ‘ 𝑀 ) | 
						
							| 4 | 1 3 | mndidcl | ⊢ ( 𝑀  ∈  Mnd  →   0   ∈  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 6 | 1 5 2 | elcntzsn | ⊢ (  0   ∈  𝐵  →  ( 𝑥  ∈  ( 𝑍 ‘ {  0  } )  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  (  0  ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑥  ∈  ( 𝑍 ‘ {  0  } )  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  (  0  ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) | 
						
							| 8 | 1 5 3 | mndrid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  𝑥 ) | 
						
							| 9 | 1 5 3 | mndlid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  (  0  ( +g ‘ 𝑀 ) 𝑥 )  =  𝑥 ) | 
						
							| 10 | 8 9 | eqtr4d | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  (  0  ( +g ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑥  ∈  𝐵  →  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  (  0  ( +g ‘ 𝑀 ) 𝑥 ) ) ) | 
						
							| 12 | 11 | pm4.71d | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑥  ∈  𝐵  ↔  ( 𝑥  ∈  𝐵  ∧  ( 𝑥 ( +g ‘ 𝑀 )  0  )  =  (  0  ( +g ‘ 𝑀 ) 𝑥 ) ) ) ) | 
						
							| 13 | 7 12 | bitr4d | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑥  ∈  ( 𝑍 ‘ {  0  } )  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 14 | 13 | eqrdv | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑍 ‘ {  0  } )  =  𝐵 ) |