Metamath Proof Explorer


Theorem cntzsnid

Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypotheses cntzun.b 𝐵 = ( Base ‘ 𝑀 )
cntzun.z 𝑍 = ( Cntz ‘ 𝑀 )
cntzsnid.1 0 = ( 0g𝑀 )
Assertion cntzsnid ( 𝑀 ∈ Mnd → ( 𝑍 ‘ { 0 } ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 cntzun.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzun.z 𝑍 = ( Cntz ‘ 𝑀 )
3 cntzsnid.1 0 = ( 0g𝑀 )
4 1 3 mndidcl ( 𝑀 ∈ Mnd → 0𝐵 )
5 eqid ( +g𝑀 ) = ( +g𝑀 )
6 1 5 2 elcntzsn ( 0𝐵 → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ ( 𝑥𝐵 ∧ ( 𝑥 ( +g𝑀 ) 0 ) = ( 0 ( +g𝑀 ) 𝑥 ) ) ) )
7 4 6 syl ( 𝑀 ∈ Mnd → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ ( 𝑥𝐵 ∧ ( 𝑥 ( +g𝑀 ) 0 ) = ( 0 ( +g𝑀 ) 𝑥 ) ) ) )
8 1 5 3 mndrid ( ( 𝑀 ∈ Mnd ∧ 𝑥𝐵 ) → ( 𝑥 ( +g𝑀 ) 0 ) = 𝑥 )
9 1 5 3 mndlid ( ( 𝑀 ∈ Mnd ∧ 𝑥𝐵 ) → ( 0 ( +g𝑀 ) 𝑥 ) = 𝑥 )
10 8 9 eqtr4d ( ( 𝑀 ∈ Mnd ∧ 𝑥𝐵 ) → ( 𝑥 ( +g𝑀 ) 0 ) = ( 0 ( +g𝑀 ) 𝑥 ) )
11 10 ex ( 𝑀 ∈ Mnd → ( 𝑥𝐵 → ( 𝑥 ( +g𝑀 ) 0 ) = ( 0 ( +g𝑀 ) 𝑥 ) ) )
12 11 pm4.71d ( 𝑀 ∈ Mnd → ( 𝑥𝐵 ↔ ( 𝑥𝐵 ∧ ( 𝑥 ( +g𝑀 ) 0 ) = ( 0 ( +g𝑀 ) 𝑥 ) ) ) )
13 7 12 bitr4d ( 𝑀 ∈ Mnd → ( 𝑥 ∈ ( 𝑍 ‘ { 0 } ) ↔ 𝑥𝐵 ) )
14 13 eqrdv ( 𝑀 ∈ Mnd → ( 𝑍 ‘ { 0 } ) = 𝐵 )