| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn1 |
|- ( ran F C_ A <-> ( ran F u. A ) = A ) |
| 2 |
|
imaeq2 |
|- ( A = ( ran F u. A ) -> ( `' F " A ) = ( `' F " ( ran F u. A ) ) ) |
| 3 |
|
imaundi |
|- ( `' F " ( ran F u. A ) ) = ( ( `' F " ran F ) u. ( `' F " A ) ) |
| 4 |
2 3
|
eqtrdi |
|- ( A = ( ran F u. A ) -> ( `' F " A ) = ( ( `' F " ran F ) u. ( `' F " A ) ) ) |
| 5 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
| 6 |
5
|
uneq1i |
|- ( ( `' F " ran F ) u. ( `' F " A ) ) = ( dom F u. ( `' F " A ) ) |
| 7 |
|
cnvimass |
|- ( `' F " A ) C_ dom F |
| 8 |
|
ssequn2 |
|- ( ( `' F " A ) C_ dom F <-> ( dom F u. ( `' F " A ) ) = dom F ) |
| 9 |
7 8
|
mpbi |
|- ( dom F u. ( `' F " A ) ) = dom F |
| 10 |
6 9
|
eqtri |
|- ( ( `' F " ran F ) u. ( `' F " A ) ) = dom F |
| 11 |
4 10
|
eqtrdi |
|- ( A = ( ran F u. A ) -> ( `' F " A ) = dom F ) |
| 12 |
11
|
eqcoms |
|- ( ( ran F u. A ) = A -> ( `' F " A ) = dom F ) |
| 13 |
1 12
|
sylbi |
|- ( ran F C_ A -> ( `' F " A ) = dom F ) |