| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h |  |-  H e. _V | 
						
							| 2 |  | coinflip.t |  |-  T e. _V | 
						
							| 3 |  | coinflip.th |  |-  H =/= T | 
						
							| 4 |  | coinflip.2 |  |-  P = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 5 |  | coinflip.3 |  |-  X = { <. H , 1 >. , <. T , 0 >. } | 
						
							| 6 | 1 2 3 4 5 | coinfliplem |  |-  P = ( ( # |` ~P { H , T } ) oFC /e 2 ) | 
						
							| 7 |  | unipw |  |-  U. ~P { H , T } = { H , T } | 
						
							| 8 |  | prex |  |-  { H , T } e. _V | 
						
							| 9 | 8 | pwid |  |-  { H , T } e. ~P { H , T } | 
						
							| 10 | 7 9 | eqeltri |  |-  U. ~P { H , T } e. ~P { H , T } | 
						
							| 11 |  | fvres |  |-  ( U. ~P { H , T } e. ~P { H , T } -> ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) = ( # ` U. ~P { H , T } ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) = ( # ` U. ~P { H , T } ) | 
						
							| 13 | 7 | fveq2i |  |-  ( # ` U. ~P { H , T } ) = ( # ` { H , T } ) | 
						
							| 14 |  | hashprg |  |-  ( ( H e. _V /\ T e. _V ) -> ( H =/= T <-> ( # ` { H , T } ) = 2 ) ) | 
						
							| 15 | 1 2 14 | mp2an |  |-  ( H =/= T <-> ( # ` { H , T } ) = 2 ) | 
						
							| 16 | 3 15 | mpbi |  |-  ( # ` { H , T } ) = 2 | 
						
							| 17 | 12 13 16 | 3eqtri |  |-  ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) = 2 | 
						
							| 18 | 17 | oveq2i |  |-  ( ( # |` ~P { H , T } ) oFC /e ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) ) = ( ( # |` ~P { H , T } ) oFC /e 2 ) | 
						
							| 19 | 6 18 | eqtr4i |  |-  P = ( ( # |` ~P { H , T } ) oFC /e ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) ) | 
						
							| 20 |  | pwcntmeas |  |-  ( { H , T } e. _V -> ( # |` ~P { H , T } ) e. ( measures ` ~P { H , T } ) ) | 
						
							| 21 | 8 20 | ax-mp |  |-  ( # |` ~P { H , T } ) e. ( measures ` ~P { H , T } ) | 
						
							| 22 |  | 2rp |  |-  2 e. RR+ | 
						
							| 23 | 17 22 | eqeltri |  |-  ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) e. RR+ | 
						
							| 24 |  | probfinmeasb |  |-  ( ( ( # |` ~P { H , T } ) e. ( measures ` ~P { H , T } ) /\ ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) e. RR+ ) -> ( ( # |` ~P { H , T } ) oFC /e ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) ) e. Prob ) | 
						
							| 25 | 21 23 24 | mp2an |  |-  ( ( # |` ~P { H , T } ) oFC /e ( ( # |` ~P { H , T } ) ` U. ~P { H , T } ) ) e. Prob | 
						
							| 26 | 19 25 | eqeltri |  |-  P e. Prob |