Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
1 2 3 4 5
|
coinfliplem |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |
7 |
|
unipw |
⊢ ∪ 𝒫 { 𝐻 , 𝑇 } = { 𝐻 , 𝑇 } |
8 |
|
prex |
⊢ { 𝐻 , 𝑇 } ∈ V |
9 |
8
|
pwid |
⊢ { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } |
10 |
7 9
|
eqeltri |
⊢ ∪ 𝒫 { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } |
11 |
|
fvres |
⊢ ( ∪ 𝒫 { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) |
13 |
7
|
fveq2i |
⊢ ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ { 𝐻 , 𝑇 } ) |
14 |
|
hashprg |
⊢ ( ( 𝐻 ∈ V ∧ 𝑇 ∈ V ) → ( 𝐻 ≠ 𝑇 ↔ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 ) ) |
15 |
1 2 14
|
mp2an |
⊢ ( 𝐻 ≠ 𝑇 ↔ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 ) |
16 |
3 15
|
mpbi |
⊢ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 |
17 |
12 13 16
|
3eqtri |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = 2 |
18 |
17
|
oveq2i |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |
19 |
6 18
|
eqtr4i |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) |
20 |
|
pwcntmeas |
⊢ ( { 𝐻 , 𝑇 } ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) ) |
21 |
8 20
|
ax-mp |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) |
22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
23 |
17 22
|
eqeltri |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ∈ ℝ+ |
24 |
|
probfinmeasb |
⊢ ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) ∧ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ∈ ℝ+ ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) ∈ Prob ) |
25 |
21 23 24
|
mp2an |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) ∈ Prob |
26 |
19 25
|
eqeltri |
⊢ 𝑃 ∈ Prob |