| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h | ⊢ 𝐻  ∈  V | 
						
							| 2 |  | coinflip.t | ⊢ 𝑇  ∈  V | 
						
							| 3 |  | coinflip.th | ⊢ 𝐻  ≠  𝑇 | 
						
							| 4 |  | coinflip.2 | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 5 |  | coinflip.3 | ⊢ 𝑋  =  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } | 
						
							| 6 | 1 2 3 4 5 | coinfliplem | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  2 ) | 
						
							| 7 |  | unipw | ⊢ ∪  𝒫  { 𝐻 ,  𝑇 }  =  { 𝐻 ,  𝑇 } | 
						
							| 8 |  | prex | ⊢ { 𝐻 ,  𝑇 }  ∈  V | 
						
							| 9 | 8 | pwid | ⊢ { 𝐻 ,  𝑇 }  ∈  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 10 | 7 9 | eqeltri | ⊢ ∪  𝒫  { 𝐻 ,  𝑇 }  ∈  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 11 |  | fvres | ⊢ ( ∪  𝒫  { 𝐻 ,  𝑇 }  ∈  𝒫  { 𝐻 ,  𝑇 }  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  =  ( ♯ ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  =  ( ♯ ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 13 | 7 | fveq2i | ⊢ ( ♯ ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  =  ( ♯ ‘ { 𝐻 ,  𝑇 } ) | 
						
							| 14 |  | hashprg | ⊢ ( ( 𝐻  ∈  V  ∧  𝑇  ∈  V )  →  ( 𝐻  ≠  𝑇  ↔  ( ♯ ‘ { 𝐻 ,  𝑇 } )  =  2 ) ) | 
						
							| 15 | 1 2 14 | mp2an | ⊢ ( 𝐻  ≠  𝑇  ↔  ( ♯ ‘ { 𝐻 ,  𝑇 } )  =  2 ) | 
						
							| 16 | 3 15 | mpbi | ⊢ ( ♯ ‘ { 𝐻 ,  𝑇 } )  =  2 | 
						
							| 17 | 12 13 16 | 3eqtri | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  =  2 | 
						
							| 18 | 17 | oveq2i | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) )  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  2 ) | 
						
							| 19 | 6 18 | eqtr4i | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) ) | 
						
							| 20 |  | pwcntmeas | ⊢ ( { 𝐻 ,  𝑇 }  ∈  V  →  ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∈  ( measures ‘ 𝒫  { 𝐻 ,  𝑇 } ) ) | 
						
							| 21 | 8 20 | ax-mp | ⊢ ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∈  ( measures ‘ 𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 22 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 23 | 17 22 | eqeltri | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  ∈  ℝ+ | 
						
							| 24 |  | probfinmeasb | ⊢ ( ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∈  ( measures ‘ 𝒫  { 𝐻 ,  𝑇 } )  ∧  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } )  ∈  ℝ+ )  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) )  ∈  Prob ) | 
						
							| 25 | 21 23 24 | mp2an | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ ∪  𝒫  { 𝐻 ,  𝑇 } ) )  ∈  Prob | 
						
							| 26 | 19 25 | eqeltri | ⊢ 𝑃  ∈  Prob |