| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
| 2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
| 3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
| 4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
| 5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
| 6 |
1 2 3 4 5
|
coinfliplem |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |
| 7 |
|
unipw |
⊢ ∪ 𝒫 { 𝐻 , 𝑇 } = { 𝐻 , 𝑇 } |
| 8 |
|
prex |
⊢ { 𝐻 , 𝑇 } ∈ V |
| 9 |
8
|
pwid |
⊢ { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } |
| 10 |
7 9
|
eqeltri |
⊢ ∪ 𝒫 { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } |
| 11 |
|
fvres |
⊢ ( ∪ 𝒫 { 𝐻 , 𝑇 } ∈ 𝒫 { 𝐻 , 𝑇 } → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) |
| 13 |
7
|
fveq2i |
⊢ ( ♯ ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = ( ♯ ‘ { 𝐻 , 𝑇 } ) |
| 14 |
|
hashprg |
⊢ ( ( 𝐻 ∈ V ∧ 𝑇 ∈ V ) → ( 𝐻 ≠ 𝑇 ↔ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 ) ) |
| 15 |
1 2 14
|
mp2an |
⊢ ( 𝐻 ≠ 𝑇 ↔ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 ) |
| 16 |
3 15
|
mpbi |
⊢ ( ♯ ‘ { 𝐻 , 𝑇 } ) = 2 |
| 17 |
12 13 16
|
3eqtri |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) = 2 |
| 18 |
17
|
oveq2i |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |
| 19 |
6 18
|
eqtr4i |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) |
| 20 |
|
pwcntmeas |
⊢ ( { 𝐻 , 𝑇 } ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) ) |
| 21 |
8 20
|
ax-mp |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) |
| 22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 23 |
17 22
|
eqeltri |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ∈ ℝ+ |
| 24 |
|
probfinmeasb |
⊢ ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∈ ( measures ‘ 𝒫 { 𝐻 , 𝑇 } ) ∧ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ∈ ℝ+ ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) ∈ Prob ) |
| 25 |
21 23 24
|
mp2an |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ ∪ 𝒫 { 𝐻 , 𝑇 } ) ) ∈ Prob |
| 26 |
19 25
|
eqeltri |
⊢ 𝑃 ∈ Prob |