Metamath Proof Explorer


Theorem probfinmeasb

Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion probfinmeasb ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ Prob )

Proof

Step Hyp Ref Expression
1 measdivcst ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ( measures ‘ 𝑆 ) )
2 measfn ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑀 Fn 𝑆 )
3 2 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → 𝑀 Fn 𝑆 )
4 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
5 4 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → 𝑆 ran sigAlgebra )
6 simpr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀 𝑆 ) ∈ ℝ+ )
7 3 5 6 ofcfn ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) Fn 𝑆 )
8 7 fndmd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) = 𝑆 )
9 8 fveq2d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( measures ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) = ( measures ‘ 𝑆 ) )
10 1 9 eleqtrrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ( measures ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) )
11 measbasedom ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ran measures ↔ ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ( measures ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) )
12 10 11 sylibr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ran measures )
13 8 unieqd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) = 𝑆 )
14 13 fveq2d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) = ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ 𝑆 ) )
15 unielsiga ( 𝑆 ran sigAlgebra → 𝑆𝑆 )
16 5 15 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → 𝑆𝑆 )
17 eqidd ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) ∧ 𝑆𝑆 ) → ( 𝑀 𝑆 ) = ( 𝑀 𝑆 ) )
18 3 5 6 17 ofcval ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) ∧ 𝑆𝑆 ) → ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ 𝑆 ) = ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) )
19 16 18 mpdan ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ 𝑆 ) = ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) )
20 rpre ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( 𝑀 𝑆 ) ∈ ℝ )
21 rpne0 ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( 𝑀 𝑆 ) ≠ 0 )
22 xdivid ( ( ( 𝑀 𝑆 ) ∈ ℝ ∧ ( 𝑀 𝑆 ) ≠ 0 ) → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
23 20 21 22 syl2anc ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
24 23 adantl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
25 14 19 24 3eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) = 1 )
26 elprob ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ Prob ↔ ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ ran measures ∧ ( ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ‘ dom ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ) = 1 ) )
27 12 25 26 sylanbrc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑀f/c /𝑒 ( 𝑀 𝑆 ) ) ∈ Prob )