Metamath Proof Explorer


Theorem probfinmeasbALTV

Description: Alternate version of probfinmeasb . (Contributed by Thierry Arnoux, 17-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion probfinmeasbALTV ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ Prob )

Proof

Step Hyp Ref Expression
1 measdivcstALTV ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ( measures ‘ 𝑆 ) )
2 ovex ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ V
3 2 rgenw 𝑥𝑆 ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ V
4 dmmptg ( ∀ 𝑥𝑆 ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ V → dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) = 𝑆 )
5 3 4 ax-mp dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) = 𝑆
6 5 fveq2i ( measures ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) = ( measures ‘ 𝑆 )
7 1 6 eleqtrrdi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ( measures ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) )
8 measbasedom ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ran measures ↔ ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ( measures ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) )
9 7 8 sylibr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ran measures )
10 5 unieqi dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) = 𝑆
11 10 fveq2i ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) = ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ 𝑆 )
12 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
13 isrnsigau ( 𝑆 ran sigAlgebra → ( 𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) ) )
14 13 simprd ( 𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀ 𝑦𝑆 ( 𝑆𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → 𝑦𝑆 ) ) )
15 14 simp1d ( 𝑆 ran sigAlgebra → 𝑆𝑆 )
16 12 15 syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆𝑆 )
17 id ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( 𝑀 𝑆 ) ∈ ℝ+ )
18 17 17 rpxdivcld ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ ℝ+ )
19 16 18 anim12i ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑆𝑆 ∧ ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ ℝ+ ) )
20 fveq2 ( 𝑥 = 𝑆 → ( 𝑀𝑥 ) = ( 𝑀 𝑆 ) )
21 20 oveq1d ( 𝑥 = 𝑆 → ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) = ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) )
22 eqid ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) = ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) )
23 21 22 fvmptg ( ( 𝑆𝑆 ∧ ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ 𝑆 ) = ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) )
24 19 23 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ 𝑆 ) = ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) )
25 rpre ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( 𝑀 𝑆 ) ∈ ℝ )
26 rpne0 ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( 𝑀 𝑆 ) ≠ 0 )
27 xdivid ( ( ( 𝑀 𝑆 ) ∈ ℝ ∧ ( 𝑀 𝑆 ) ≠ 0 ) → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
28 25 26 27 syl2anc ( ( 𝑀 𝑆 ) ∈ ℝ+ → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
29 28 adantl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀 𝑆 ) /𝑒 ( 𝑀 𝑆 ) ) = 1 )
30 24 29 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ 𝑆 ) = 1 )
31 11 30 eqtrid ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) = 1 )
32 elprob ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ Prob ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ ran measures ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ‘ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ) = 1 ) )
33 9 31 32 sylanbrc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 𝑆 ) ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 ( 𝑀 𝑆 ) ) ) ∈ Prob )