Step |
Hyp |
Ref |
Expression |
1 |
|
measdivcstALTV |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ( measures ‘ 𝑆 ) ) |
2 |
|
ovex |
⊢ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ V |
3 |
2
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑆 ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ V |
4 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ V → dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) = 𝑆 ) |
5 |
3 4
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) = 𝑆 |
6 |
5
|
fveq2i |
⊢ ( measures ‘ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) = ( measures ‘ 𝑆 ) |
7 |
1 6
|
eleqtrrdi |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ( measures ‘ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) ) |
8 |
|
measbasedom |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ∪ ran measures ↔ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ( measures ‘ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ∪ ran measures ) |
10 |
5
|
unieqi |
⊢ ∪ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) = ∪ 𝑆 |
11 |
10
|
fveq2i |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) = ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ 𝑆 ) |
12 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
13 |
|
isrnsigau |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) ) |
14 |
13
|
simprd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ∪ 𝑆 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆 ) ) ) |
15 |
14
|
simp1d |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆 ) |
16 |
12 15
|
syl |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∪ 𝑆 ∈ 𝑆 ) |
17 |
|
id |
⊢ ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ → ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) |
18 |
17 17
|
rpxdivcld |
⊢ ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ → ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ ℝ+ ) |
19 |
16 18
|
anim12i |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( ∪ 𝑆 ∈ 𝑆 ∧ ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ ℝ+ ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = ∪ 𝑆 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑆 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = ∪ 𝑆 → ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) = ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) |
23 |
21 22
|
fvmptg |
⊢ ( ( ∪ 𝑆 ∈ 𝑆 ∧ ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ 𝑆 ) = ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) |
24 |
19 23
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ 𝑆 ) = ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) |
25 |
|
rpre |
⊢ ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ → ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ ) |
26 |
|
rpne0 |
⊢ ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ → ( 𝑀 ‘ ∪ 𝑆 ) ≠ 0 ) |
27 |
|
xdivid |
⊢ ( ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ ∧ ( 𝑀 ‘ ∪ 𝑆 ) ≠ 0 ) → ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) = 1 ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ → ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) = 1 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( ( 𝑀 ‘ ∪ 𝑆 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) = 1 ) |
30 |
24 29
|
eqtrd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ 𝑆 ) = 1 ) |
31 |
11 30
|
eqtrid |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) = 1 ) |
32 |
|
elprob |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ Prob ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ ∪ ran measures ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ‘ ∪ dom ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ) = 1 ) ) |
33 |
9 31 32
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑀 ‘ ∪ 𝑆 ) ∈ ℝ+ ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝑀 ‘ 𝑥 ) /𝑒 ( 𝑀 ‘ ∪ 𝑆 ) ) ) ∈ Prob ) |