Metamath Proof Explorer


Theorem probfinmeasbALTV

Description: Alternate version of probfinmeasb . (Contributed by Thierry Arnoux, 17-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion probfinmeasbALTV M measures S M S + x S M x ÷ 𝑒 M S Prob

Proof

Step Hyp Ref Expression
1 measdivcstALTV M measures S M S + x S M x ÷ 𝑒 M S measures S
2 ovex M x ÷ 𝑒 M S V
3 2 rgenw x S M x ÷ 𝑒 M S V
4 dmmptg x S M x ÷ 𝑒 M S V dom x S M x ÷ 𝑒 M S = S
5 3 4 ax-mp dom x S M x ÷ 𝑒 M S = S
6 5 fveq2i measures dom x S M x ÷ 𝑒 M S = measures S
7 1 6 eleqtrrdi M measures S M S + x S M x ÷ 𝑒 M S measures dom x S M x ÷ 𝑒 M S
8 measbasedom x S M x ÷ 𝑒 M S ran measures x S M x ÷ 𝑒 M S measures dom x S M x ÷ 𝑒 M S
9 7 8 sylibr M measures S M S + x S M x ÷ 𝑒 M S ran measures
10 5 unieqi dom x S M x ÷ 𝑒 M S = S
11 10 fveq2i x S M x ÷ 𝑒 M S dom x S M x ÷ 𝑒 M S = x S M x ÷ 𝑒 M S S
12 measbase M measures S S ran sigAlgebra
13 isrnsigau S ran sigAlgebra S 𝒫 S S S y S S y S y 𝒫 S y ω y S
14 13 simprd S ran sigAlgebra S S y S S y S y 𝒫 S y ω y S
15 14 simp1d S ran sigAlgebra S S
16 12 15 syl M measures S S S
17 id M S + M S +
18 17 17 rpxdivcld M S + M S ÷ 𝑒 M S +
19 16 18 anim12i M measures S M S + S S M S ÷ 𝑒 M S +
20 fveq2 x = S M x = M S
21 20 oveq1d x = S M x ÷ 𝑒 M S = M S ÷ 𝑒 M S
22 eqid x S M x ÷ 𝑒 M S = x S M x ÷ 𝑒 M S
23 21 22 fvmptg S S M S ÷ 𝑒 M S + x S M x ÷ 𝑒 M S S = M S ÷ 𝑒 M S
24 19 23 syl M measures S M S + x S M x ÷ 𝑒 M S S = M S ÷ 𝑒 M S
25 rpre M S + M S
26 rpne0 M S + M S 0
27 xdivid M S M S 0 M S ÷ 𝑒 M S = 1
28 25 26 27 syl2anc M S + M S ÷ 𝑒 M S = 1
29 28 adantl M measures S M S + M S ÷ 𝑒 M S = 1
30 24 29 eqtrd M measures S M S + x S M x ÷ 𝑒 M S S = 1
31 11 30 syl5eq M measures S M S + x S M x ÷ 𝑒 M S dom x S M x ÷ 𝑒 M S = 1
32 elprob x S M x ÷ 𝑒 M S Prob x S M x ÷ 𝑒 M S ran measures x S M x ÷ 𝑒 M S dom x S M x ÷ 𝑒 M S = 1
33 9 31 32 sylanbrc M measures S M S + x S M x ÷ 𝑒 M S Prob