Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
|
simpr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) |
7 |
|
fvres |
⊢ ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) = ( ♯ ‘ 𝑥 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) = ( ♯ ‘ 𝑥 ) ) |
9 |
|
prfi |
⊢ { 𝐻 , 𝑇 } ∈ Fin |
10 |
6
|
elpwid |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ⊆ { 𝐻 , 𝑇 } ) |
11 |
|
ssfi |
⊢ ( ( { 𝐻 , 𝑇 } ∈ Fin ∧ 𝑥 ⊆ { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
13 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
15 |
14
|
nn0red |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ♯ ‘ 𝑥 ) ∈ ℝ ) |
16 |
8 15
|
eqeltrd |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) ∈ ℝ ) |
17 |
|
simpr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
18 |
|
2re |
⊢ 2 ∈ ℝ |
19 |
18
|
a1i |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 2 ∈ ℝ ) |
20 |
|
2ne0 |
⊢ 2 ≠ 0 |
21 |
20
|
a1i |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 2 ≠ 0 ) |
22 |
|
rexdiv |
⊢ ( ( 𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝑦 /𝑒 2 ) = ( 𝑦 / 2 ) ) |
23 |
17 19 21 22
|
syl3anc |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → ( 𝑦 /𝑒 2 ) = ( 𝑦 / 2 ) ) |
24 |
|
hashresfn |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } |
25 |
24
|
a1i |
⊢ ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
26 |
|
pwfi |
⊢ ( { 𝐻 , 𝑇 } ∈ Fin ↔ 𝒫 { 𝐻 , 𝑇 } ∈ Fin ) |
27 |
9 26
|
mpbi |
⊢ 𝒫 { 𝐻 , 𝑇 } ∈ Fin |
28 |
27
|
a1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ Fin ) |
29 |
18
|
a1i |
⊢ ( 𝐻 ∈ V → 2 ∈ ℝ ) |
30 |
16 23 25 28 29
|
ofcfeqd2 |
⊢ ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) ) |
31 |
1 30
|
ax-mp |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
32 |
4 31
|
eqtr4i |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |