| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
| 2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
| 3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
| 4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
| 5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
| 6 |
|
simpr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) |
| 7 |
|
fvres |
⊢ ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) = ( ♯ ‘ 𝑥 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) = ( ♯ ‘ 𝑥 ) ) |
| 9 |
|
prfi |
⊢ { 𝐻 , 𝑇 } ∈ Fin |
| 10 |
6
|
elpwid |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ⊆ { 𝐻 , 𝑇 } ) |
| 11 |
|
ssfi |
⊢ ( ( { 𝐻 , 𝑇 } ∈ Fin ∧ 𝑥 ⊆ { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
| 13 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0red |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ♯ ‘ 𝑥 ) ∈ ℝ ) |
| 16 |
8 15
|
eqeltrd |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ‘ 𝑥 ) ∈ ℝ ) |
| 17 |
|
simpr |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 18 |
|
2re |
⊢ 2 ∈ ℝ |
| 19 |
18
|
a1i |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 2 ∈ ℝ ) |
| 20 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 21 |
20
|
a1i |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → 2 ≠ 0 ) |
| 22 |
|
rexdiv |
⊢ ( ( 𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝑦 /𝑒 2 ) = ( 𝑦 / 2 ) ) |
| 23 |
17 19 21 22
|
syl3anc |
⊢ ( ( 𝐻 ∈ V ∧ 𝑦 ∈ ℝ ) → ( 𝑦 /𝑒 2 ) = ( 𝑦 / 2 ) ) |
| 24 |
|
hashresfn |
⊢ ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } |
| 25 |
24
|
a1i |
⊢ ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) Fn 𝒫 { 𝐻 , 𝑇 } ) |
| 26 |
|
pwfi |
⊢ ( { 𝐻 , 𝑇 } ∈ Fin ↔ 𝒫 { 𝐻 , 𝑇 } ∈ Fin ) |
| 27 |
9 26
|
mpbi |
⊢ 𝒫 { 𝐻 , 𝑇 } ∈ Fin |
| 28 |
27
|
a1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ Fin ) |
| 29 |
18
|
a1i |
⊢ ( 𝐻 ∈ V → 2 ∈ ℝ ) |
| 30 |
16 23 25 28 29
|
ofcfeqd2 |
⊢ ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) ) |
| 31 |
1 30
|
ax-mp |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
| 32 |
4 31
|
eqtr4i |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c /𝑒 2 ) |