| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h | ⊢ 𝐻  ∈  V | 
						
							| 2 |  | coinflip.t | ⊢ 𝑇  ∈  V | 
						
							| 3 |  | coinflip.th | ⊢ 𝐻  ≠  𝑇 | 
						
							| 4 |  | coinflip.2 | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 5 |  | coinflip.3 | ⊢ 𝑋  =  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 7 |  | fvres | ⊢ ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ 𝑥 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ 𝑥 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 9 |  | prfi | ⊢ { 𝐻 ,  𝑇 }  ∈  Fin | 
						
							| 10 | 6 | elpwid | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  𝑥  ⊆  { 𝐻 ,  𝑇 } ) | 
						
							| 11 |  | ssfi | ⊢ ( ( { 𝐻 ,  𝑇 }  ∈  Fin  ∧  𝑥  ⊆  { 𝐻 ,  𝑇 } )  →  𝑥  ∈  Fin ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  𝑥  ∈  Fin ) | 
						
							| 13 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0red | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  ( ♯ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 16 | 8 15 | eqeltrd | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝐻  ∈  V  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 18 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐻  ∈  V  ∧  𝑦  ∈  ℝ )  →  2  ∈  ℝ ) | 
						
							| 20 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐻  ∈  V  ∧  𝑦  ∈  ℝ )  →  2  ≠  0 ) | 
						
							| 22 |  | rexdiv | ⊢ ( ( 𝑦  ∈  ℝ  ∧  2  ∈  ℝ  ∧  2  ≠  0 )  →  ( 𝑦  /𝑒  2 )  =  ( 𝑦  /  2 ) ) | 
						
							| 23 | 17 19 21 22 | syl3anc | ⊢ ( ( 𝐻  ∈  V  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  /𝑒  2 )  =  ( 𝑦  /  2 ) ) | 
						
							| 24 |  | hashresfn | ⊢ ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  Fn  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐻  ∈  V  →  ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  Fn  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 26 |  | pwfi | ⊢ ( { 𝐻 ,  𝑇 }  ∈  Fin  ↔  𝒫  { 𝐻 ,  𝑇 }  ∈  Fin ) | 
						
							| 27 | 9 26 | mpbi | ⊢ 𝒫  { 𝐻 ,  𝑇 }  ∈  Fin | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐻  ∈  V  →  𝒫  { 𝐻 ,  𝑇 }  ∈  Fin ) | 
						
							| 29 | 18 | a1i | ⊢ ( 𝐻  ∈  V  →  2  ∈  ℝ ) | 
						
							| 30 | 16 23 25 28 29 | ofcfeqd2 | ⊢ ( 𝐻  ∈  V  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  2 )  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) ) | 
						
							| 31 | 1 30 | ax-mp | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  2 )  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 32 | 4 31 | eqtr4i | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /𝑒  2 ) |