| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h |  |-  H e. _V | 
						
							| 2 |  | coinflip.t |  |-  T e. _V | 
						
							| 3 |  | coinflip.th |  |-  H =/= T | 
						
							| 4 |  | coinflip.2 |  |-  P = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 5 |  | coinflip.3 |  |-  X = { <. H , 1 >. , <. T , 0 >. } | 
						
							| 6 |  | simpr |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> x e. ~P { H , T } ) | 
						
							| 7 |  | fvres |  |-  ( x e. ~P { H , T } -> ( ( # |` ~P { H , T } ) ` x ) = ( # ` x ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> ( ( # |` ~P { H , T } ) ` x ) = ( # ` x ) ) | 
						
							| 9 |  | prfi |  |-  { H , T } e. Fin | 
						
							| 10 | 6 | elpwid |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> x C_ { H , T } ) | 
						
							| 11 |  | ssfi |  |-  ( ( { H , T } e. Fin /\ x C_ { H , T } ) -> x e. Fin ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> x e. Fin ) | 
						
							| 13 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> ( # ` x ) e. NN0 ) | 
						
							| 15 | 14 | nn0red |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> ( # ` x ) e. RR ) | 
						
							| 16 | 8 15 | eqeltrd |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> ( ( # |` ~P { H , T } ) ` x ) e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( H e. _V /\ y e. RR ) -> y e. RR ) | 
						
							| 18 |  | 2re |  |-  2 e. RR | 
						
							| 19 | 18 | a1i |  |-  ( ( H e. _V /\ y e. RR ) -> 2 e. RR ) | 
						
							| 20 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 21 | 20 | a1i |  |-  ( ( H e. _V /\ y e. RR ) -> 2 =/= 0 ) | 
						
							| 22 |  | rexdiv |  |-  ( ( y e. RR /\ 2 e. RR /\ 2 =/= 0 ) -> ( y /e 2 ) = ( y / 2 ) ) | 
						
							| 23 | 17 19 21 22 | syl3anc |  |-  ( ( H e. _V /\ y e. RR ) -> ( y /e 2 ) = ( y / 2 ) ) | 
						
							| 24 |  | hashresfn |  |-  ( # |` ~P { H , T } ) Fn ~P { H , T } | 
						
							| 25 | 24 | a1i |  |-  ( H e. _V -> ( # |` ~P { H , T } ) Fn ~P { H , T } ) | 
						
							| 26 |  | pwfi |  |-  ( { H , T } e. Fin <-> ~P { H , T } e. Fin ) | 
						
							| 27 | 9 26 | mpbi |  |-  ~P { H , T } e. Fin | 
						
							| 28 | 27 | a1i |  |-  ( H e. _V -> ~P { H , T } e. Fin ) | 
						
							| 29 | 18 | a1i |  |-  ( H e. _V -> 2 e. RR ) | 
						
							| 30 | 16 23 25 28 29 | ofcfeqd2 |  |-  ( H e. _V -> ( ( # |` ~P { H , T } ) oFC /e 2 ) = ( ( # |` ~P { H , T } ) oFC / 2 ) ) | 
						
							| 31 | 1 30 | ax-mp |  |-  ( ( # |` ~P { H , T } ) oFC /e 2 ) = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 32 | 4 31 | eqtr4i |  |-  P = ( ( # |` ~P { H , T } ) oFC /e 2 ) |