Metamath Proof Explorer


Theorem cossid

Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019)

Ref Expression
Assertion cossid
|- ,~ _I = _I

Proof

Step Hyp Ref Expression
1 equvinv
 |-  ( y = z <-> E. x ( x = y /\ x = z ) )
2 ideqg
 |-  ( y e. _V -> ( x _I y <-> x = y ) )
3 2 elv
 |-  ( x _I y <-> x = y )
4 ideqg
 |-  ( z e. _V -> ( x _I z <-> x = z ) )
5 4 elv
 |-  ( x _I z <-> x = z )
6 3 5 anbi12i
 |-  ( ( x _I y /\ x _I z ) <-> ( x = y /\ x = z ) )
7 6 exbii
 |-  ( E. x ( x _I y /\ x _I z ) <-> E. x ( x = y /\ x = z ) )
8 1 7 bitr4i
 |-  ( y = z <-> E. x ( x _I y /\ x _I z ) )
9 8 opabbii
 |-  { <. y , z >. | y = z } = { <. y , z >. | E. x ( x _I y /\ x _I z ) }
10 df-id
 |-  _I = { <. y , z >. | y = z }
11 df-coss
 |-  ,~ _I = { <. y , z >. | E. x ( x _I y /\ x _I z ) }
12 9 10 11 3eqtr4ri
 |-  ,~ _I = _I