Metamath Proof Explorer


Theorem cossid

Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019)

Ref Expression
Assertion cossid I = I

Proof

Step Hyp Ref Expression
1 equvinv y = z x x = y x = z
2 ideqg y V x I y x = y
3 2 elv x I y x = y
4 ideqg z V x I z x = z
5 4 elv x I z x = z
6 3 5 anbi12i x I y x I z x = y x = z
7 6 exbii x x I y x I z x x = y x = z
8 1 7 bitr4i y = z x x I y x I z
9 8 opabbii y z | y = z = y z | x x I y x I z
10 df-id I = y z | y = z
11 df-coss I = y z | x x I y x I z
12 9 10 11 3eqtr4ri I = I