| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadumatpoly.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmadumatpoly.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmadumatpoly.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmadumatpoly.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmadumatpoly.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 6 |  | cpmadumatpoly.r |  |-  .X. = ( .r ` Y ) | 
						
							| 7 |  | cpmadumatpoly.m0 |  |-  .- = ( -g ` Y ) | 
						
							| 8 |  | cpmadumatpoly.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 9 |  | cpmadumatpoly.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cpmadumatpoly.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 11 |  | cpmadumatpoly.m1 |  |-  .x. = ( .s ` Y ) | 
						
							| 12 |  | cpmadumatpoly.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 13 |  | cpmadumatpoly.z |  |-  Z = ( var1 ` R ) | 
						
							| 14 |  | cpmadumatpoly.d |  |-  D = ( ( Z .x. .1. ) .- ( T ` M ) ) | 
						
							| 15 |  | cpmadumatpoly.j |  |-  J = ( N maAdju P ) | 
						
							| 16 |  | cpmadumatpoly.w |  |-  W = ( Base ` Y ) | 
						
							| 17 |  | cpmadumatpoly.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 18 |  | cpmadumatpoly.x |  |-  X = ( var1 ` A ) | 
						
							| 19 |  | cpmadumatpoly.m2 |  |-  .* = ( .s ` Q ) | 
						
							| 20 |  | cpmadumatpoly.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 21 |  | cpmadumatpoly.u |  |-  U = ( N cPolyMatToMat R ) | 
						
							| 22 |  | fvexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( 0g ` A ) e. _V ) | 
						
							| 23 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 24 | 23 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 25 | 24 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 27 | 10 3 4 | 0elcpmat |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` Y ) e. S ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( 0g ` Y ) e. S ) | 
						
							| 29 | 1 2 3 4 6 7 8 5 9 10 | chfacfisfcpmat |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) | 
						
							| 30 | 23 29 | syl3anl2 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) | 
						
							| 31 | 30 | anassrs |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> G : NN0 --> S ) | 
						
							| 32 | 1 2 10 21 | cpm2mf |  |-  ( ( N e. Fin /\ R e. Ring ) -> U : S --> B ) | 
						
							| 33 | 26 32 | syl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> U : S --> B ) | 
						
							| 34 |  | ssidd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> S C_ S ) | 
						
							| 35 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 36 | 35 | a1i |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> NN0 e. _V ) | 
						
							| 37 | 10 | ovexi |  |-  S e. _V | 
						
							| 38 | 37 | a1i |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> S e. _V ) | 
						
							| 39 | 1 2 3 4 6 7 8 5 9 | chfacffsupp |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G finSupp ( 0g ` Y ) ) | 
						
							| 40 | 39 | anassrs |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> G finSupp ( 0g ` Y ) ) | 
						
							| 41 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` Y ) = ( 0g ` Y ) | 
						
							| 43 | 1 21 3 4 41 42 | m2cpminv0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) | 
						
							| 44 | 23 43 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) | 
						
							| 45 | 44 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) | 
						
							| 47 | 22 28 31 33 34 36 38 40 46 | fsuppcor |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) |