| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadumatpoly.a |  | 
						
							| 2 |  | cpmadumatpoly.b |  | 
						
							| 3 |  | cpmadumatpoly.p |  | 
						
							| 4 |  | cpmadumatpoly.y |  | 
						
							| 5 |  | cpmadumatpoly.t |  | 
						
							| 6 |  | cpmadumatpoly.r |  | 
						
							| 7 |  | cpmadumatpoly.m0 |  | 
						
							| 8 |  | cpmadumatpoly.0 |  | 
						
							| 9 |  | cpmadumatpoly.g |  | 
						
							| 10 |  | cpmadumatpoly.s |  | 
						
							| 11 |  | cpmadumatpoly.m1 |  | 
						
							| 12 |  | cpmadumatpoly.1 |  | 
						
							| 13 |  | cpmadumatpoly.z |  | 
						
							| 14 |  | cpmadumatpoly.d |  | 
						
							| 15 |  | cpmadumatpoly.j |  | 
						
							| 16 |  | cpmadumatpoly.w |  | 
						
							| 17 |  | cpmadumatpoly.q |  | 
						
							| 18 |  | cpmadumatpoly.x |  | 
						
							| 19 |  | cpmadumatpoly.m2 |  | 
						
							| 20 |  | cpmadumatpoly.e |  | 
						
							| 21 |  | cpmadumatpoly.u |  | 
						
							| 22 |  | fvexd |  | 
						
							| 23 |  | crngring |  | 
						
							| 24 | 23 | anim2i |  | 
						
							| 25 | 24 | 3adant3 |  | 
						
							| 26 | 25 | ad2antrr |  | 
						
							| 27 | 10 3 4 | 0elcpmat |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 1 2 3 4 6 7 8 5 9 10 | chfacfisfcpmat |  | 
						
							| 30 | 23 29 | syl3anl2 |  | 
						
							| 31 | 30 | anassrs |  | 
						
							| 32 | 1 2 10 21 | cpm2mf |  | 
						
							| 33 | 26 32 | syl |  | 
						
							| 34 |  | ssidd |  | 
						
							| 35 |  | nn0ex |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 10 | ovexi |  | 
						
							| 38 | 37 | a1i |  | 
						
							| 39 | 1 2 3 4 6 7 8 5 9 | chfacffsupp |  | 
						
							| 40 | 39 | anassrs |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 1 21 3 4 41 42 | m2cpminv0 |  | 
						
							| 44 | 23 43 | sylan2 |  | 
						
							| 45 | 44 | 3adant3 |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 22 28 31 33 34 36 38 40 46 | fsuppcor |  |