Metamath Proof Explorer


Theorem chfacffsupp

Description: The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019) (Proof shortened by AV, 23-Dec-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
Assertion chfacffsupp N Fin R CRing M B s b B 0 s finSupp 0 Y G

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 fvexd N Fin R CRing M B s b B 0 s 0 Y V
11 ovex 0 ˙ - ˙ T M × ˙ T b 0 V
12 fvex T b s V
13 7 fvexi 0 ˙ V
14 ovex T b n 1 - ˙ T M × ˙ T b n V
15 13 14 ifex if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n V
16 12 15 ifex if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n V
17 11 16 ifex if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n V
18 17 a1i N Fin R CRing M B s b B 0 s n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n V
19 nnnn0 s s 0
20 peano2nn0 s 0 s + 1 0
21 19 20 syl s s + 1 0
22 21 ad2antrl N Fin R CRing M B s b B 0 s s + 1 0
23 simplr N Fin R CRing M B s b B 0 s k 0 s + 1 < k k 0
24 0red N Fin R CRing M B s b B 0 s k 0 s + 1 < k 0
25 nnre s s
26 peano2re s s + 1
27 25 26 syl s s + 1
28 27 adantr s b B 0 s s + 1
29 28 ad3antlr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1
30 nn0re k 0 k
31 30 ad2antlr N Fin R CRing M B s b B 0 s k 0 s + 1 < k k
32 19 adantr s b B 0 s s 0
33 32 ad2antlr N Fin R CRing M B s b B 0 s k 0 s 0
34 nn0p1gt0 s 0 0 < s + 1
35 33 34 syl N Fin R CRing M B s b B 0 s k 0 0 < s + 1
36 35 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k 0 < s + 1
37 simpr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1 < k
38 24 29 31 36 37 lttrd N Fin R CRing M B s b B 0 s k 0 s + 1 < k 0 < k
39 38 gt0ne0d N Fin R CRing M B s b B 0 s k 0 s + 1 < k k 0
40 39 neneqd N Fin R CRing M B s b B 0 s k 0 s + 1 < k ¬ k = 0
41 40 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ k = 0
42 eqeq1 n = k n = 0 k = 0
43 42 notbid n = k ¬ n = 0 ¬ k = 0
44 43 adantl N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ n = 0 ¬ k = 0
45 41 44 mpbird N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ n = 0
46 45 iffalsed N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
47 28 ad2antlr N Fin R CRing M B s b B 0 s k 0 s + 1
48 ltne s + 1 s + 1 < k k s + 1
49 47 48 sylan N Fin R CRing M B s b B 0 s k 0 s + 1 < k k s + 1
50 49 neneqd N Fin R CRing M B s b B 0 s k 0 s + 1 < k ¬ k = s + 1
51 50 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ k = s + 1
52 eqeq1 n = k n = s + 1 k = s + 1
53 52 notbid n = k ¬ n = s + 1 ¬ k = s + 1
54 53 adantl N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ n = s + 1 ¬ k = s + 1
55 51 54 mpbird N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k ¬ n = s + 1
56 55 iffalsed N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
57 simplr N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k s + 1 < k
58 breq2 n = k s + 1 < n s + 1 < k
59 58 adantl N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k s + 1 < n s + 1 < k
60 57 59 mpbird N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k s + 1 < n
61 60 iftrued N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙
62 61 7 eqtrdi N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
63 46 56 62 3eqtrd N Fin R CRing M B s b B 0 s k 0 s + 1 < k n = k if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
64 23 63 csbied N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
65 64 ex N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
66 65 ralrimiva N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
67 breq1 l = s + 1 l < k s + 1 < k
68 67 rspceaimv s + 1 0 k 0 s + 1 < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y l 0 k 0 l < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
69 22 66 68 syl2anc N Fin R CRing M B s b B 0 s l 0 k 0 l < k k / n if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 Y
70 10 18 69 mptnn0fsupp N Fin R CRing M B s b B 0 s finSupp 0 Y n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
71 9 70 eqbrtrid N Fin R CRing M B s b B 0 s finSupp 0 Y G