| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadumatpoly.a |  | 
						
							| 2 |  | cpmadumatpoly.b |  | 
						
							| 3 |  | cpmadumatpoly.p |  | 
						
							| 4 |  | cpmadumatpoly.y |  | 
						
							| 5 |  | cpmadumatpoly.t |  | 
						
							| 6 |  | cpmadumatpoly.r |  | 
						
							| 7 |  | cpmadumatpoly.m0 |  | 
						
							| 8 |  | cpmadumatpoly.0 |  | 
						
							| 9 |  | cpmadumatpoly.g |  | 
						
							| 10 |  | cpmadumatpoly.s |  | 
						
							| 11 |  | cpmadumatpoly.m1 |  | 
						
							| 12 |  | cpmadumatpoly.1 |  | 
						
							| 13 |  | cpmadumatpoly.z |  | 
						
							| 14 |  | cpmadumatpoly.d |  | 
						
							| 15 |  | cpmadumatpoly.j |  | 
						
							| 16 |  | cpmadumatpoly.w |  | 
						
							| 17 |  | cpmadumatpoly.q |  | 
						
							| 18 |  | cpmadumatpoly.x |  | 
						
							| 19 |  | cpmadumatpoly.m2 |  | 
						
							| 20 |  | cpmadumatpoly.e |  | 
						
							| 21 |  | cpmadumatpoly.u |  | 
						
							| 22 |  | cpmadumatpoly.i |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqeq1 |  | 
						
							| 26 |  | eqeq1 |  | 
						
							| 27 |  | breq2 |  | 
						
							| 28 |  | fvoveq1 |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 |  | 2fveq3 |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 29 31 | oveq12d |  | 
						
							| 33 | 27 32 | ifbieq2d |  | 
						
							| 34 | 26 33 | ifbieq2d |  | 
						
							| 35 | 25 34 | ifbieq2d |  | 
						
							| 36 | 35 | cbvmptv |  | 
						
							| 37 | 9 36 | eqtri |  | 
						
							| 38 | 1 2 3 4 5 13 23 11 6 12 24 7 14 15 8 37 | cpmadugsum |  | 
						
							| 39 |  | simp1 |  | 
						
							| 40 | 39 | ad3antrrr |  | 
						
							| 41 |  | crngring |  | 
						
							| 42 | 41 | 3ad2ant2 |  | 
						
							| 43 | 42 | ad3antrrr |  | 
						
							| 44 | 1 2 3 4 6 7 8 5 9 10 | chfacfisfcpmat |  | 
						
							| 45 | 41 44 | syl3anl2 |  | 
						
							| 46 | 45 | anassrs |  | 
						
							| 47 | 46 | ffvelcdmda |  | 
						
							| 48 | 10 21 5 | m2cpminvid2 |  | 
						
							| 49 | 40 43 47 48 | syl3anc |  | 
						
							| 50 | 49 | eqcomd |  | 
						
							| 51 | 50 | oveq2d |  | 
						
							| 52 | 51 | mpteq2dva |  | 
						
							| 53 | 52 | oveq2d |  | 
						
							| 54 | 53 | eqeq2d |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 |  | 3simpa |  | 
						
							| 57 | 56 | ad2antrr |  | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | cpmadumatpolylem1 |  | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | cpmadumatpolylem2 |  | 
						
							| 60 | 3 4 16 19 20 18 1 2 17 22 23 13 11 5 | pm2mp |  | 
						
							| 61 | 57 58 59 60 | syl12anc |  | 
						
							| 62 |  | fvco3 |  | 
						
							| 63 | 62 | eqcomd |  | 
						
							| 64 | 46 63 | sylan |  | 
						
							| 65 | 64 | fveq2d |  | 
						
							| 66 | 65 | oveq2d |  | 
						
							| 67 | 66 | mpteq2dva |  | 
						
							| 68 | 67 | oveq2d |  | 
						
							| 69 | 68 | fveq2d |  | 
						
							| 70 | 64 | oveq1d |  | 
						
							| 71 | 70 | mpteq2dva |  | 
						
							| 72 | 71 | oveq2d |  | 
						
							| 73 | 61 69 72 | 3eqtr4d |  | 
						
							| 74 | 55 73 | sylan9eqr |  | 
						
							| 75 | 74 | ex |  | 
						
							| 76 | 54 75 | sylbid |  | 
						
							| 77 | 76 | reximdva |  | 
						
							| 78 | 77 | reximdva |  | 
						
							| 79 | 38 78 | mpd |  |