| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadumatpoly.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadumatpoly.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadumatpoly.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadumatpoly.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadumatpoly.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadumatpoly.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 7 |  | cpmadumatpoly.m0 | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 8 |  | cpmadumatpoly.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 9 |  | cpmadumatpoly.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cpmadumatpoly.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 11 |  | cpmadumatpoly.m1 | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 12 |  | cpmadumatpoly.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 13 |  | cpmadumatpoly.z | ⊢ 𝑍  =  ( var1 ‘ 𝑅 ) | 
						
							| 14 |  | cpmadumatpoly.d | ⊢ 𝐷  =  ( ( 𝑍  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 15 |  | cpmadumatpoly.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 16 |  | cpmadumatpoly.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 17 |  | cpmadumatpoly.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 18 |  | cpmadumatpoly.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 19 |  | cpmadumatpoly.m2 | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 20 |  | cpmadumatpoly.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 21 |  | cpmadumatpoly.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 22 |  | cpmadumatpoly.i | ⊢ 𝐼  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 24 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 25 |  | eqeq1 | ⊢ ( 𝑛  =  𝑧  →  ( 𝑛  =  0  ↔  𝑧  =  0 ) ) | 
						
							| 26 |  | eqeq1 | ⊢ ( 𝑛  =  𝑧  →  ( 𝑛  =  ( 𝑠  +  1 )  ↔  𝑧  =  ( 𝑠  +  1 ) ) ) | 
						
							| 27 |  | breq2 | ⊢ ( 𝑛  =  𝑧  →  ( ( 𝑠  +  1 )  <  𝑛  ↔  ( 𝑠  +  1 )  <  𝑧 ) ) | 
						
							| 28 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑧  →  ( 𝑏 ‘ ( 𝑛  −  1 ) )  =  ( 𝑏 ‘ ( 𝑧  −  1 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑛  =  𝑧  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) ) ) | 
						
							| 30 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑧  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑛  =  𝑧  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) | 
						
							| 32 | 29 31 | oveq12d | ⊢ ( 𝑛  =  𝑧  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) | 
						
							| 33 | 27 32 | ifbieq2d | ⊢ ( 𝑛  =  𝑧  →  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =  if ( ( 𝑠  +  1 )  <  𝑧 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 34 | 26 33 | ifbieq2d | ⊢ ( 𝑛  =  𝑧  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  if ( 𝑧  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑧 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) | 
						
							| 35 | 25 34 | ifbieq2d | ⊢ ( 𝑛  =  𝑧  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  if ( 𝑧  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑧  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑧 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 36 | 35 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) )  =  ( 𝑧  ∈  ℕ0  ↦  if ( 𝑧  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑧  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑧 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 37 | 9 36 | eqtri | ⊢ 𝐺  =  ( 𝑧  ∈  ℕ0  ↦  if ( 𝑧  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑧  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑧 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) | 
						
							| 38 | 1 2 3 4 5 13 23 11 6 12 24 7 14 15 8 37 | cpmadugsum | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 39 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 41 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 44 | 1 2 3 4 6 7 8 5 9 10 | chfacfisfcpmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 45 | 41 44 | syl3anl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 46 | 45 | anassrs | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 47 | 46 | ffvelcdmda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 48 | 10 21 5 | m2cpminvid2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝐺 ‘ 𝑛 )  ∈  𝑆 )  →  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 49 | 40 43 47 48 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) )  =  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 52 | 51 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) )  ↔  ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 56 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | cpmadumatpolylem1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | cpmadumatpolylem2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈  ∘  𝐺 )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 60 | 3 4 16 19 20 18 1 2 17 22 23 13 11 5 | pm2mp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 𝑈  ∘  𝐺 )  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 61 | 57 58 59 60 | syl12anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 62 |  | fvco3 | ⊢ ( ( 𝐺 : ℕ0 ⟶ 𝑆  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 63 | 62 | eqcomd | ⊢ ( ( 𝐺 : ℕ0 ⟶ 𝑆  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 64 | 46 63 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) | 
						
							| 67 | 66 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 70 | 64 | oveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 71 | 70 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑈  ∘  𝐺 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 73 | 61 69 72 | 3eqtr4d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 74 | 55 73 | sylan9eqr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  →  ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 76 | 54 75 | sylbid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) )  →  ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 77 | 76 | reximdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  →  ( ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) )  →  ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 78 | 77 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 )  ·  ( 𝐺 ‘ 𝑛 ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 79 | 38 78 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷  ×  ( 𝐽 ‘ 𝐷 ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) |