| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | cayhamlem2.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | cayhamlem2.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | cayhamlem2.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 5 |  | cayhamlem2.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 6 |  | cayhamlem2.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 7 |  | cayhamlem2.r | ⊢  ·   =  ( .r ‘ 𝐴 ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  →  𝐻 : ℕ0 ⟶ 𝐾 ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐻 ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 11 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 14 | 1 13 | eqtr2id | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  𝐾 ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐻 ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ↔  ( 𝐻 ‘ 𝐿 )  ∈  𝐾 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐻 ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ↔  ( 𝐻 ‘ 𝐿 )  ∈  𝐾 ) ) | 
						
							| 17 | 10 16 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐻 ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( algSc ‘ 𝐴 )  =  ( algSc ‘ 𝐴 ) | 
						
							| 19 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 21 | 18 19 20 5 4 | asclval | ⊢ ( ( 𝐻 ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  →  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) )  =  ( ( 𝐻 ‘ 𝐿 )  ∗   1  ) ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) )  =  ( ( 𝐻 ‘ 𝐿 )  ∗   1  ) ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐻 ‘ 𝐿 )  ∗   1  )  =  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐿  ↑  𝑀 )  ·  ( ( 𝐻 ‘ 𝐿 )  ∗   1  ) )  =  ( ( 𝐿  ↑  𝑀 )  ·  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) ) ) ) | 
						
							| 25 | 2 | matassa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  AssAlg ) | 
						
							| 26 | 25 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  AssAlg ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  𝐴  ∈  AssAlg ) | 
						
							| 28 |  | eqid | ⊢ ( mulGrp ‘ 𝐴 )  =  ( mulGrp ‘ 𝐴 ) | 
						
							| 29 | 28 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 30 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 31 | 30 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 33 | 2 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 34 | 28 | ringmgp | ⊢ ( 𝐴  ∈  Ring  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 35 | 32 33 34 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 37 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 38 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 39 | 29 6 36 37 38 | mulgnn0cld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐿  ↑  𝑀 )  ∈  𝐵 ) | 
						
							| 40 | 18 19 20 3 7 5 | asclmul2 | ⊢ ( ( 𝐴  ∈  AssAlg  ∧  ( 𝐻 ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  ( 𝐿  ↑  𝑀 )  ∈  𝐵 )  →  ( ( 𝐿  ↑  𝑀 )  ·  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) ) )  =  ( ( 𝐻 ‘ 𝐿 )  ∗  ( 𝐿  ↑  𝑀 ) ) ) | 
						
							| 41 | 27 17 39 40 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐿  ↑  𝑀 )  ·  ( ( algSc ‘ 𝐴 ) ‘ ( 𝐻 ‘ 𝐿 ) ) )  =  ( ( 𝐻 ‘ 𝐿 )  ∗  ( 𝐿  ↑  𝑀 ) ) ) | 
						
							| 42 | 24 41 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐻  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐻 ‘ 𝐿 )  ∗  ( 𝐿  ↑  𝑀 ) )  =  ( ( 𝐿  ↑  𝑀 )  ·  ( ( 𝐻 ‘ 𝐿 )  ∗   1  ) ) ) |