| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chcoeffeq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chcoeffeq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chcoeffeq.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chcoeffeq.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chcoeffeq.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chcoeffeq.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chcoeffeq.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chcoeffeq.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 10 |  | chcoeffeq.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 11 |  | chcoeffeq.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 12 |  | chcoeffeq.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 13 |  | chcoeffeq.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | chcoeffeq.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | chcoeffeq.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 16 |  | cayhamlem.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 17 |  | cayhamlem.r | ⊢  ·   =  ( .r ‘ 𝐴 ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | chcoeffeq | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) | 
						
							| 19 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑙  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑛  =  𝑙  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑛  =  𝑙  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) | 
						
							| 22 | 19 21 | eqeq12d | ⊢ ( 𝑛  =  𝑙  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ↔  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) ) | 
						
							| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ↔  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) | 
						
							| 24 |  | 2fveq3 | ⊢ ( 𝑙  =  𝑛  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑙  =  𝑛  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑙  =  𝑛  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) | 
						
							| 27 | 24 26 | eqeq12d | ⊢ ( 𝑙  =  𝑛  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ↔  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 28 | 27 | rspccva | ⊢ ( ( ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) | 
						
							| 29 |  | simprll | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 31 | 9 1 2 3 30 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 | 10 32 | eqeltrid | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐾  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 34 |  | eqid | ⊢ ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐾 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 36 | 34 30 3 35 | coe1f | ⊢ ( 𝐾  ∈  ( Base ‘ 𝑃 )  →  ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 33 36 | syl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 38 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 39 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 40 | 38 39 | pm3.2i | ⊢ ( ( Base ‘ 𝑅 )  ∈  V  ∧  ℕ0  ∈  V ) | 
						
							| 41 |  | elmapg | ⊢ ( ( ( Base ‘ 𝑅 )  ∈  V  ∧  ℕ0  ∈  V )  →  ( ( coe1 ‘ 𝐾 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ↔  ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 42 | 40 41 | mp1i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( coe1 ‘ 𝐾 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ↔  ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 43 | 37 42 | mpbird | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( coe1 ‘ 𝐾 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 45 | 35 1 2 13 14 16 17 | cayhamlem2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( ( coe1 ‘ 𝐾 )  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 46 | 29 43 44 45 | syl12anc | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) )  →  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 50 | 47 49 | eqtr4d | ⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 50 | exp32 | ⊢ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ( 𝑛  ∈  ℕ0  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 52 | 51 | com12 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 54 | 28 53 | mpd | ⊢ ( ( ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 55 | 54 | com12 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 56 | 55 | impl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 57 | 56 | mpteq2dva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 60 | 23 59 | biimtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 61 | 60 | reximdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  →  ( ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 62 | 61 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 63 | 18 62 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 )  ·  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |