| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chcoeffeq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chcoeffeq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chcoeffeq.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chcoeffeq.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chcoeffeq.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chcoeffeq.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chcoeffeq.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chcoeffeq.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 10 |  | chcoeffeq.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 11 |  | chcoeffeq.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 12 |  | chcoeffeq.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 13 |  | chcoeffeq.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | chcoeffeq.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | chcoeffeq.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 16 |  | cayhamlem.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 17 |  | cayhamlem.e2 | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 18 |  | id | ⊢ ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 19 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 21 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 25 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 26 | 21 25 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 27 |  | ringcmn | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  CMnd ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  CMnd ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  CMnd ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐴  ∈  CMnd ) | 
						
							| 31 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ℕ0  ∈  V ) | 
						
							| 33 | 20 23 25 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐴  ∈  Ring ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 35 |  | eqid | ⊢ ( mulGrp ‘ 𝐴 )  =  ( mulGrp ‘ 𝐴 ) | 
						
							| 36 | 35 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 37 | 19 22 25 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 38 | 35 | ringmgp | ⊢ ( 𝐴  ∈  Ring  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 42 |  | simpll3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 44 | 36 16 40 41 43 | mulgnn0cld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑀 )  ∈  𝐵 ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑁  ConstPolyMat  𝑅 )  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 46 | 1 2 45 15 | cpm2mf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 47 | 19 22 46 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 48 | 47 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑠  ∈  ℕ ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 11 45 | chfacfisfcpmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 52 | 20 23 42 49 50 51 | syl32anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 53 | 52 | ffvelcdmda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑛 )  ∈  ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 54 | 48 53 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  𝐵 ) | 
						
							| 55 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 56 | 2 55 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑛  ↑  𝑀 )  ∈  𝐵  ∧  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  𝐵 )  →  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 57 | 34 44 54 56 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 58 | 57 | fmpttd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) : ℕ0 ⟶ 𝐵 ) | 
						
							| 59 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0g ‘ 𝐴 )  ∈  V ) | 
						
							| 60 |  | ovexd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  V ) | 
						
							| 61 | 1 2 3 4 5 6 7 8 11 | chfacffsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 62 | 61 | anassrs | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 63 |  | ovex | ⊢ ( 𝑁  ConstPolyMat  𝑅 )  ∈  V | 
						
							| 64 | 63 31 | pm3.2i | ⊢ ( ( 𝑁  ConstPolyMat  𝑅 )  ∈  V  ∧  ℕ0  ∈  V ) | 
						
							| 65 |  | elmapg | ⊢ ( ( ( 𝑁  ConstPolyMat  𝑅 )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐺  ∈  ( ( 𝑁  ConstPolyMat  𝑅 )  ↑m  ℕ0 )  ↔  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) ) | 
						
							| 66 | 64 65 | mp1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐺  ∈  ( ( 𝑁  ConstPolyMat  𝑅 )  ↑m  ℕ0 )  ↔  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) ) | 
						
							| 67 | 52 66 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺  ∈  ( ( 𝑁  ConstPolyMat  𝑅 )  ↑m  ℕ0 ) ) | 
						
							| 68 |  | fvex | ⊢ ( 0g ‘ 𝑌 )  ∈  V | 
						
							| 69 |  | fsuppmapnn0ub | ⊢ ( ( 𝐺  ∈  ( ( 𝑁  ConstPolyMat  𝑅 )  ↑m  ℕ0 )  ∧  ( 0g ‘ 𝑌 )  ∈  V )  →  ( 𝐺  finSupp  ( 0g ‘ 𝑌 )  →  ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 70 | 67 68 69 | sylancl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐺  finSupp  ( 0g ‘ 𝑌 )  →  ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 71 |  | csbov12g | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ⦋ 𝑧  /  𝑛 ⦌ ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ⦋ 𝑧  /  𝑛 ⦌ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 72 |  | csbov1g | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( 𝑛  ↑  𝑀 )  =  ( ⦋ 𝑧  /  𝑛 ⦌ 𝑛  ↑  𝑀 ) ) | 
						
							| 73 |  | csbvarg | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ 𝑛  =  𝑧 ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( 𝑧  ∈  ℕ0  →  ( ⦋ 𝑧  /  𝑛 ⦌ 𝑛  ↑  𝑀 )  =  ( 𝑧  ↑  𝑀 ) ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( 𝑛  ↑  𝑀 )  =  ( 𝑧  ↑  𝑀 ) ) | 
						
							| 76 |  | csbfv2g | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑈 ‘ ⦋ 𝑧  /  𝑛 ⦌ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 77 |  | csbfv | ⊢ ⦋ 𝑧  /  𝑛 ⦌ ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑧 ) | 
						
							| 78 | 77 | a1i | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( 𝑧  ∈  ℕ0  →  ( 𝑈 ‘ ⦋ 𝑧  /  𝑛 ⦌ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 80 | 76 79 | eqtrd | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 81 | 75 80 | oveq12d | ⊢ ( 𝑧  ∈  ℕ0  →  ( ⦋ 𝑧  /  𝑛 ⦌ ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ⦋ 𝑧  /  𝑛 ⦌ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 82 | 71 81 | eqtrd | ⊢ ( 𝑧  ∈  ℕ0  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 83 | 82 | ad2antlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 84 |  | fveq2 | ⊢ ( ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) ) ) | 
						
							| 85 | 19 22 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 87 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 88 | 1 15 3 4 24 87 | m2cpminv0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 89 | 86 88 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 90 | 89 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 91 | 84 90 | sylan9eqr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 0g ‘ 𝐴 ) ) ) | 
						
							| 93 | 33 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 94 | 39 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  ( mulGrp ‘ 𝐴 )  ∈  Mnd ) | 
						
							| 95 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  𝑧  ∈  ℕ0 ) | 
						
							| 96 | 42 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 97 | 36 16 94 95 96 | mulgnn0cld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  ( 𝑧  ↑  𝑀 )  ∈  𝐵 ) | 
						
							| 98 | 93 97 | jca | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  ( 𝐴  ∈  Ring  ∧  ( 𝑧  ↑  𝑀 )  ∈  𝐵 ) ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ( 𝐴  ∈  Ring  ∧  ( 𝑧  ↑  𝑀 )  ∈  𝐵 ) ) | 
						
							| 100 | 2 55 24 | ringrz | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑧  ↑  𝑀 )  ∈  𝐵 )  →  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 101 | 99 100 | syl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ( ( 𝑧  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 102 | 83 92 101 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  ∧  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 103 | 102 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑧  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 104 | 103 | adantlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑤  ∈  ℕ0 )  ∧  𝑧  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 105 | 104 | imim2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑤  ∈  ℕ0 )  ∧  𝑧  ∈  ℕ0 )  →  ( ( 𝑤  <  𝑧  →  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ( 𝑤  <  𝑧  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 106 | 105 | ralimdva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑤  ∈  ℕ0 )  →  ( ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 107 | 106 | reximdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ( 𝐺 ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) )  →  ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 108 | 70 107 | syld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐺  finSupp  ( 0g ‘ 𝑌 )  →  ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 109 | 62 108 | mpd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ∃ 𝑤  ∈  ℕ0 ∀ 𝑧  ∈  ℕ0 ( 𝑤  <  𝑧  →  ⦋ 𝑧  /  𝑛 ⦌ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 110 | 59 60 109 | mptnn0fsupp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 111 | 2 24 30 32 58 110 | gsumcl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  ∈  𝐵 ) | 
						
							| 112 | 15 1 2 8 | m2cpminvid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  ∈  𝐵 )  →  ( 𝑈 ‘ ( 𝑇 ‘ ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 113 | 20 23 111 112 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈 ‘ ( 𝑇 ‘ ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 114 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 115 | 19 22 114 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 116 |  | ringmnd | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Mnd ) | 
						
							| 117 | 115 116 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Mnd ) | 
						
							| 118 | 117 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑌  ∈  Mnd ) | 
						
							| 119 | 8 1 2 3 4 12 | mat2pmatghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐴  GrpHom  𝑌 ) ) | 
						
							| 120 | 20 23 119 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑇  ∈  ( 𝐴  GrpHom  𝑌 ) ) | 
						
							| 121 |  | ghmmhm | ⊢ ( 𝑇  ∈  ( 𝐴  GrpHom  𝑌 )  →  𝑇  ∈  ( 𝐴  MndHom  𝑌 ) ) | 
						
							| 122 | 120 121 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑇  ∈  ( 𝐴  MndHom  𝑌 ) ) | 
						
							| 123 | 37 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 124 | 21 46 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 125 | 124 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 126 | 125 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 127 | 126 53 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  𝐵 ) | 
						
							| 128 | 123 44 127 56 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 129 | 2 24 30 118 32 122 128 110 | gsummptmhm | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 130 | 8 1 2 3 4 12 | mat2pmatrhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( 𝐴  RingHom  𝑌 ) ) | 
						
							| 131 | 130 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑇  ∈  ( 𝐴  RingHom  𝑌 ) ) | 
						
							| 132 | 131 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑇  ∈  ( 𝐴  RingHom  𝑌 ) ) | 
						
							| 133 | 2 55 5 | rhmmul | ⊢ ( ( 𝑇  ∈  ( 𝐴  RingHom  𝑌 )  ∧  ( 𝑛  ↑  𝑀 )  ∈  𝐵  ∧  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  𝐵 )  →  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑛  ↑  𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 134 | 132 44 127 133 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑛  ↑  𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 135 | 8 1 2 3 4 12 | mat2pmatmhm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 136 | 135 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 137 | 136 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 138 | 36 16 17 | mhmmulg | ⊢ ( ( 𝑇  ∈  ( ( mulGrp ‘ 𝐴 )  MndHom  ( mulGrp ‘ 𝑌 ) )  ∧  𝑛  ∈  ℕ0  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑛  ↑  𝑀 ) )  =  ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 139 | 137 41 43 138 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑛  ↑  𝑀 ) )  =  ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 140 | 19 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 141 | 22 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 142 | 45 15 8 | m2cpminvid2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝐺 ‘ 𝑛 )  ∈  ( 𝑁  ConstPolyMat  𝑅 ) )  →  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 143 | 140 141 53 142 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 144 | 139 143 | oveq12d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑇 ‘ ( 𝑛  ↑  𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 145 | 134 144 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 146 | 145 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 147 | 146 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑇 ‘ ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 148 | 129 147 | eqtr3d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 149 | 148 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈 ‘ ( 𝑇 ‘ ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 150 | 113 149 | eqtr3d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 151 | 18 150 | sylan9eqr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 152 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 55 | cayhamlem3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑀 ) ( .r ‘ 𝐴 ) ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 153 | 151 152 | reximddv2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |