| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a |  | 
						
							| 2 |  | chcoeffeq.b |  | 
						
							| 3 |  | chcoeffeq.p |  | 
						
							| 4 |  | chcoeffeq.y |  | 
						
							| 5 |  | chcoeffeq.r |  | 
						
							| 6 |  | chcoeffeq.s |  | 
						
							| 7 |  | chcoeffeq.0 |  | 
						
							| 8 |  | chcoeffeq.t |  | 
						
							| 9 |  | chcoeffeq.c |  | 
						
							| 10 |  | chcoeffeq.k |  | 
						
							| 11 |  | chcoeffeq.g |  | 
						
							| 12 |  | chcoeffeq.w |  | 
						
							| 13 |  | chcoeffeq.1 |  | 
						
							| 14 |  | chcoeffeq.m |  | 
						
							| 15 |  | chcoeffeq.u |  | 
						
							| 16 |  | cayhamlem.e1 |  | 
						
							| 17 |  | cayhamlem.e2 |  | 
						
							| 18 |  | id |  | 
						
							| 19 |  | simp1 |  | 
						
							| 20 | 19 | ad2antrr |  | 
						
							| 21 |  | crngring |  | 
						
							| 22 | 21 | 3ad2ant2 |  | 
						
							| 23 | 22 | ad2antrr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 | matring |  | 
						
							| 26 | 21 25 | sylan2 |  | 
						
							| 27 |  | ringcmn |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | 3adant3 |  | 
						
							| 30 | 29 | ad2antrr |  | 
						
							| 31 |  | nn0ex |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 20 23 25 | syl2anc |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 35 2 | mgpbas |  | 
						
							| 37 | 19 22 25 | syl2anc |  | 
						
							| 38 | 35 | ringmgp |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 39 | ad3antrrr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 |  | simpll3 |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 36 16 40 41 43 | mulgnn0cld |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 1 2 45 15 | cpm2mf |  | 
						
							| 47 | 19 22 46 | syl2anc |  | 
						
							| 48 | 47 | ad3antrrr |  | 
						
							| 49 |  | simplr |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 1 2 3 4 5 6 7 8 11 45 | chfacfisfcpmat |  | 
						
							| 52 | 20 23 42 49 50 51 | syl32anc |  | 
						
							| 53 | 52 | ffvelcdmda |  | 
						
							| 54 | 48 53 | ffvelcdmd |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 2 55 | ringcl |  | 
						
							| 57 | 34 44 54 56 | syl3anc |  | 
						
							| 58 | 57 | fmpttd |  | 
						
							| 59 |  | fvexd |  | 
						
							| 60 |  | ovexd |  | 
						
							| 61 | 1 2 3 4 5 6 7 8 11 | chfacffsupp |  | 
						
							| 62 | 61 | anassrs |  | 
						
							| 63 |  | ovex |  | 
						
							| 64 | 63 31 | pm3.2i |  | 
						
							| 65 |  | elmapg |  | 
						
							| 66 | 64 65 | mp1i |  | 
						
							| 67 | 52 66 | mpbird |  | 
						
							| 68 |  | fvex |  | 
						
							| 69 |  | fsuppmapnn0ub |  | 
						
							| 70 | 67 68 69 | sylancl |  | 
						
							| 71 |  | csbov12g |  | 
						
							| 72 |  | csbov1g |  | 
						
							| 73 |  | csbvarg |  | 
						
							| 74 | 73 | oveq1d |  | 
						
							| 75 | 72 74 | eqtrd |  | 
						
							| 76 |  | csbfv2g |  | 
						
							| 77 |  | csbfv |  | 
						
							| 78 | 77 | a1i |  | 
						
							| 79 | 78 | fveq2d |  | 
						
							| 80 | 76 79 | eqtrd |  | 
						
							| 81 | 75 80 | oveq12d |  | 
						
							| 82 | 71 81 | eqtrd |  | 
						
							| 83 | 82 | ad2antlr |  | 
						
							| 84 |  | fveq2 |  | 
						
							| 85 | 19 22 | jca |  | 
						
							| 86 | 85 | adantr |  | 
						
							| 87 |  | eqid |  | 
						
							| 88 | 1 15 3 4 24 87 | m2cpminv0 |  | 
						
							| 89 | 86 88 | syl |  | 
						
							| 90 | 89 | ad2antrr |  | 
						
							| 91 | 84 90 | sylan9eqr |  | 
						
							| 92 | 91 | oveq2d |  | 
						
							| 93 | 33 | adantr |  | 
						
							| 94 | 39 | ad3antrrr |  | 
						
							| 95 |  | simpr |  | 
						
							| 96 | 42 | adantr |  | 
						
							| 97 | 36 16 94 95 96 | mulgnn0cld |  | 
						
							| 98 | 93 97 | jca |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 2 55 24 | ringrz |  | 
						
							| 101 | 99 100 | syl |  | 
						
							| 102 | 83 92 101 | 3eqtrd |  | 
						
							| 103 | 102 | ex |  | 
						
							| 104 | 103 | adantlr |  | 
						
							| 105 | 104 | imim2d |  | 
						
							| 106 | 105 | ralimdva |  | 
						
							| 107 | 106 | reximdva |  | 
						
							| 108 | 70 107 | syld |  | 
						
							| 109 | 62 108 | mpd |  | 
						
							| 110 | 59 60 109 | mptnn0fsupp |  | 
						
							| 111 | 2 24 30 32 58 110 | gsumcl |  | 
						
							| 112 | 15 1 2 8 | m2cpminvid |  | 
						
							| 113 | 20 23 111 112 | syl3anc |  | 
						
							| 114 | 3 4 | pmatring |  | 
						
							| 115 | 19 22 114 | syl2anc |  | 
						
							| 116 |  | ringmnd |  | 
						
							| 117 | 115 116 | syl |  | 
						
							| 118 | 117 | ad2antrr |  | 
						
							| 119 | 8 1 2 3 4 12 | mat2pmatghm |  | 
						
							| 120 | 20 23 119 | syl2anc |  | 
						
							| 121 |  | ghmmhm |  | 
						
							| 122 | 120 121 | syl |  | 
						
							| 123 | 37 | ad3antrrr |  | 
						
							| 124 | 21 46 | sylan2 |  | 
						
							| 125 | 124 | 3adant3 |  | 
						
							| 126 | 125 | ad3antrrr |  | 
						
							| 127 | 126 53 | ffvelcdmd |  | 
						
							| 128 | 123 44 127 56 | syl3anc |  | 
						
							| 129 | 2 24 30 118 32 122 128 110 | gsummptmhm |  | 
						
							| 130 | 8 1 2 3 4 12 | mat2pmatrhm |  | 
						
							| 131 | 130 | 3adant3 |  | 
						
							| 132 | 131 | ad3antrrr |  | 
						
							| 133 | 2 55 5 | rhmmul |  | 
						
							| 134 | 132 44 127 133 | syl3anc |  | 
						
							| 135 | 8 1 2 3 4 12 | mat2pmatmhm |  | 
						
							| 136 | 135 | 3adant3 |  | 
						
							| 137 | 136 | ad3antrrr |  | 
						
							| 138 | 36 16 17 | mhmmulg |  | 
						
							| 139 | 137 41 43 138 | syl3anc |  | 
						
							| 140 | 19 | ad3antrrr |  | 
						
							| 141 | 22 | ad3antrrr |  | 
						
							| 142 | 45 15 8 | m2cpminvid2 |  | 
						
							| 143 | 140 141 53 142 | syl3anc |  | 
						
							| 144 | 139 143 | oveq12d |  | 
						
							| 145 | 134 144 | eqtrd |  | 
						
							| 146 | 145 | mpteq2dva |  | 
						
							| 147 | 146 | oveq2d |  | 
						
							| 148 | 129 147 | eqtr3d |  | 
						
							| 149 | 148 | fveq2d |  | 
						
							| 150 | 113 149 | eqtr3d |  | 
						
							| 151 | 18 150 | sylan9eqr |  | 
						
							| 152 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 55 | cayhamlem3 |  | 
						
							| 153 | 151 152 | reximddv2 |  |